A hybrid model for short-term rainstorm forecasting based on a back-propagation neural network and synoptic diagnosis

被引:1
|
作者
Guolu Gao [1 ]
Yang Li [2 ]
Jiaqi Li [3 ]
Xueyun Zhou [1 ]
Ziqin Zhou [4 ]
机构
[1] Yaan Meteorological Observatory,Sichuan Meteorological Bureau
[2] College of Atmospheric Science,Chengdu University of Information Technology
[3] Leshan Meteorological Observatory,Sichuan Meteorological Bureau
[4] Nanchong Meteorological Observatory,Sichuan Meteorological Bureau
基金
中国国家自然科学基金;
关键词
暴雨; 短期预测方法; BP神经网络; 复合预测模型;
D O I
暂无
中图分类号
P457.6 [降水预报];
学科分类号
0706 ; 070601 ;
摘要
暴雨是我国最重要的自然灾害之一.大量的研究表明,暴雨的频率和强度在全球变暖的背景下正在逐年增强.但是如何成功的预测短期暴雨,特别是发生在复杂地形下的暴雨,仍然是一个巨大的挑战.本项研究采用BP神经网络和天气学诊断相结合的方法,探索了一种四川盆地西部复杂地形下的暴雨预报模型.该模型有效改善了喇叭口地形下,受低层偏东风影响的暴雨预报准确性.机器学习与天气学理论的结合,提升了模型的物理基础和预测成功率,同时该方法也为发展具有本地特征的暴雨预报客观工具,提供了一定的参考价值.
引用
收藏
页码:15 / 20
页数:6
相关论文
共 50 条
  • [1] A hybrid model for short-term rainstorm forecasting based on a back-propagation neural network and synoptic diagnosis
    Gao, Guolu
    Li, Yang
    Li, Jiaqi
    Zhou, Xueyun
    Zhou, Ziqin
    [J]. ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2021, 14 (05)
  • [2] Short-term power load forecasting by neural network with stochastic back-propagation learning algorithm
    Hwang, RC
    Huang, HC
    Hsieh, JG
    [J]. 2000 IEEE POWER ENGINEERING SOCIETY WINTER MEETING - VOLS 1-4, CONFERENCE PROCEEDINGS, 2000, : 1790 - 1795
  • [3] Improved Social Emotion Optimization Algorithm for Short-Term Traffic Flow Forecasting Based on Back-Propagation Neural Network
    张军
    赵申卫
    王远强
    朱新山
    [J]. Journal of Shanghai Jiaotong University(Science), 2019, 24 (02) : 209 - 219
  • [4] Improved Social Emotion Optimization Algorithm for Short-Term Traffic Flow Forecasting Based on Back-Propagation Neural Network
    Zhang J.
    Zhao S.
    Wang Y.
    Zhu X.
    [J]. Journal of Shanghai Jiaotong University (Science), 2019, 24 (2) : 209 - 219
  • [5] Short-term PV power forecasting using empirical mode decomposition in integration with back-propagation neural network
    Yadav, Harendra Kumar
    Pal, Yash
    Tripathi, Madan Mohan
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2020, 41 (01): : 25 - 37
  • [6] Hybrid neural network model for short-term load forecasting
    Yin, Chengqun
    Kang, Lifeng
    Sun, Wei
    [J]. ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2007, : 408 - +
  • [7] Short-Term Load Prediction Method for Power Distributing Method Based on Back-Propagation Neural Network
    Liu, Yuyu
    Li, Dong
    Pei, Hongyan
    Liu, Keyan
    Li, Yunhua
    Yang, Liman
    [J]. PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2017, : 881 - 886
  • [8] A Hybrid Forecasting Model for the Velocity of Hybrid Robotic Fish Based on Back-Propagation Neural Network With Genetic Algorithm Optimization
    Shen, Xiaorui
    Zheng, Yuxin
    Zhang, Runfeng
    [J]. IEEE ACCESS, 2020, 8 : 111731 - 111741
  • [9] A hybrid short-term load forecasting method based on improved ensemble empirical mode decomposition and back propagation neural network
    Yu, Yun-luo
    Li, Wei
    Sheng, De-ren
    Chen, Jian-hong
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2016, 17 (02): : 101 - 114
  • [10] Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan
    Lee, Tsung-Lin
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2008, 21 (01) : 63 - 72