Computable upper bounds for the adiabatic approximation errors

被引:0
|
作者
YU BaoMin [1 ,2 ]
CAO HuaiXin [2 ]
GUO ZhiHua [2 ]
WANG WenHua [2 ]
机构
[1] College of Mathematics and Information Science,Weinan Normal University
[2] College of Mathematics and Information Science,Shaanxi Normal University
基金
中国博士后科学基金; 中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
upper bound; adiabatic approximation; error;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
080701 ;
摘要
For a given Hermitian Hamiltonian H(s)(s∈[0,1])with eigenvalues Ek(s)and the corresponding eigenstates|Ek(s)(1 k N),adiabatic evolution described by the dilated Hamiltonian HT(t):=H(t/T)(t∈[0,T])starting from any fixed eigenstate|En(0)is discussed in this paper.Under the gap-condition that|Ek(s)-En(s)|λ>0 for all s∈[0,1]and all k n,computable upper bounds for the adiabatic approximation errors between the exact solution|ψT(t)and the adiabatic approximation solution|ψadi T(t)to the Schr¨odinger equation i|˙ψT(t)=HT(t)|ψT(t)with the initial condition|ψT(0)=|En(0)are given in terms of fidelity and distance,respectively.As an application,it is proved that when the total evolving time T goes to infinity,|ψT(t)-|ψadi T(t)converges uniformly to zero,which implies that|ψT(t)≈|ψadi T(t)for all t∈[0,T]provided that T is large enough.
引用
收藏
页码:2031 / 2038
页数:8
相关论文
共 50 条
  • [1] Computable upper bounds for the adiabatic approximation errors
    Yu BaoMin
    Cao HuaiXin
    Guo ZhiHua
    Wang WenHua
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2014, 57 (11) : 2031 - 2038
  • [2] Computable upper bounds for the adiabatic approximation errors
    BaoMin Yu
    HuaiXin Cao
    ZhiHua Guo
    WenHua Wang
    [J]. Science China Physics, Mechanics & Astronomy, 2014, 57 : 2031 - 2038
  • [3] Efficient and accurate computation of upper bounds of approximation errors
    Chevillard, S.
    Harrison, J.
    Joldes, M.
    Lauter, Ch.
    [J]. THEORETICAL COMPUTER SCIENCE, 2011, 412 (16) : 1523 - 1543
  • [4] Computable upper and lower bounds on eigenfrequencies
    Wang, Li
    Chamoin, Ludovic
    Ladeveze, Pierre
    Zhong, Hongzhi
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 302 : 27 - 43
  • [5] Improved error bounds for the adiabatic approximation
    Cheung, Donny
    Hoyer, Peter
    Wiebe, Nathan
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (41)
  • [6] ADIABATIC UPPER BOUNDS FOR HELMHOLTZ FUNCTION
    GOLDEN, S
    [J]. PHYSICAL REVIEW A, 1974, 10 (05): : 1740 - 1747
  • [7] UPPER BOUNDS ON MANY-CHANNEL SCATTERING PHASE SHIFTS BY AN ADIABATIC-TYPE APPROXIMATION
    GERBER, RB
    KARPLUS, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (06): : 2726 - +
  • [8] Bounds for the adiabatic approximation with applications to quantum computation
    Jansen, Sabine
    Ruskai, Mary-Beth
    Seiler, Ruedi
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (10)
  • [9] Lower and upper bounds for strong approximation errors for numerical approximations of stochastic heat equations
    Sebastian Becker
    Benjamin Gess
    Arnulf Jentzen
    Peter E. Kloeden
    [J]. BIT Numerical Mathematics, 2020, 60 : 1057 - 1073
  • [10] Lower and upper bounds for strong approximation errors for numerical approximations of stochastic heat equations
    Becker, Sebastian
    Gess, Benjamin
    Jentzen, Arnulf
    Kloeden, Peter E.
    [J]. BIT NUMERICAL MATHEMATICS, 2020, 60 (04) : 1057 - 1073