Zeta Functions of the Complement and xyz-Transformations of a Regular Graph

被引:0
|
作者
王学勤 [1 ]
邓爱平 [1 ]
机构
[1] College of Science,Donghua University
基金
中国国家自然科学基金;
关键词
regular graph; complement; xyz-transformation; zeta function;
D O I
10.19884/j.1672-5220.2018.06.008
中图分类号
O157.5 [图论];
学科分类号
摘要
Let Z(λ,G)denote the zeta function of a graph G.In this paper the complement G~Cand the G-transformation Gof an r-regular graph G with n vertices and m edges for x,y,z∈{0,1,+,-},are considerd.The relationship between Z(λ,G)and Z(λ,G~C)is obtained.For all x,y,z∈{0,1,+,-},the explicit formulas for the reciprocal of Z(λ,G)in terms of r,m,n and the characteristic polynomial of G are obtained.Due to limited space,only the expressions for Gwith z=0,and xyz∈{0++,+++,1+-}are presented here.
引用
收藏
页码:480 / 485
页数:6
相关论文
共 50 条
  • [1] Computing the Kirchhoff Index of Some xyz-Transformations of Regular Molecular Graphs
    Yang, Yujun
    INTELLIGENT COMPUTING THEORY, 2014, 8588 : 173 - 183
  • [2] Bartholdi zeta functions of graph bundles having regular fibers
    Kwak, JH
    Lee, J
    Sohn, MY
    EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (05) : 593 - 605
  • [3] Zeta functions of graph bundles
    Feng, Rongquan
    Kwak, Jin Ho
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 43 (06) : 1269 - 1287
  • [4] Zeta functions of graph coverings
    Stark, HM
    Terras, AA
    UNUSUAL APPLICATIONS OF NUMBER THEORY, 2004, 64 : 199 - 212
  • [5] Zeta functions of graph coverings
    Mizuno, H
    Sato, I
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 80 (02) : 247 - 257
  • [6] Laplacian Energies of Regular Graph Transformations
    邓爱平
    王雯
    JournalofDonghuaUniversity(EnglishEdition), 2017, 34 (03) : 392 - 397
  • [7] Laplacian spectra of regular graph transformations
    Deng, Aiping
    Kelmans, Alexander
    Meng, Juan
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (1-2) : 118 - 133
  • [8] Weighted zeta functions of graph coverings
    Sato, Iwao
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [9] Bartholdi Zeta Functions of Fractal Graph
    Sato, Iwato
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [10] Zeta functions of infinite graph bundles
    Cooper, Samuel
    Prassidis, Stratos
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (02): : 185 - 201