Preparation and evaluation of biomimetric nano-hydroxyapatite-based composite scaffolds for bone-tissue engineering

被引:0
|
作者
YANG ChunRong 1
2 Key Laboratory of Specialty Functional Materials of the Ministry of Education
机构
关键词
composite; scaffold; cell; biomineralization; regulatory;
D O I
暂无
中图分类号
R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
In the present study,novel biomimetic composite scaffolds with a composition similar to that of natural bone were prepared,using nano-hydroxyapatite,collagen,and phosphatidylserine.The scaffolds possess an interconnected porous structure with a porosity of 84%.The pore size ranges from several micrometers up to about 400 m.In-vitro studies in simulated body fluids showed that the morphologies of the products derived from mineralization can be regulated by the extracellular matrix components of the scaffolds;this in turn leads to creation of a large number of hydroxyapatite crystals on the scaffold surface.The regulatory properties of collagen and phosphatidylserine also influenced the cell response to the composite scaffolds.MC3T3-E1 cells attached and spread on the surfaces of the materials and interacted with the substrates;this may be the result of charged groups on the composite materials.Radiological analysis suggested that calluses and bone bridges formed in defects within 12 weeks.These composite scaffolds may therefore be a suitable replacement in bone-tissue engineering.
引用
收藏
页码:2787 / 2792
页数:6
相关论文
共 50 条
  • [1] Preparation and evaluation of biomimetric nano-hydroxyapatite-based composite scaffolds for bone-tissue engineering
    Yang ChunRong
    Wang YingJun
    Chen XiaoFeng
    CHINESE SCIENCE BULLETIN, 2012, 57 (21): : 2787 - 2792
  • [2] Preparation and evaluation of nano-hydroxyapatite/β-tricalciumphosphate/chitosan composite scaffolds for bone tissue engineering
    Lin, T.
    Zhang, S. M.
    Li, J.
    Zhang, L.
    Liu, Y. H.
    Xue, Y. H.
    BIOCERAMICS, VOL 20, PTS 1 AND 2, 2008, 361-363 : 463 - 466
  • [3] Scaffolds for bone-tissue engineering
    Lee, Seunghun S.
    Du, Xiaoyu
    Kim, Inseon
    Ferguson, Stephen J.
    MATTER, 2022, 5 (09) : 2722 - 2759
  • [4] Magnetic composite scaffolds of polycaprolactone/nFeHA, for bone-tissue engineering
    Diaz, E.
    Valle, M. B.
    Barandiaran, J. M.
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2016, 65 (12) : 593 - 600
  • [5] Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering
    Kim, Hye-Lee
    Jung, Gil-Yong
    Yoon, Jun-Ho
    Han, Jung-Suk
    Park, Yoon-Jeong
    Kim, Do-Gyoon
    Zhang, Miqin
    Kim, Dae-Joon
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 54 : 20 - 25
  • [6] Preparation of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds for bone tissue engineering
    Hayati, Amir Nemati
    Rezaie, H. R.
    Hosseinalipour, S. M.
    MATERIALS LETTERS, 2011, 65 (04) : 736 - 739
  • [7] Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering
    Nukavarapu, Syam P.
    Kumbar, Sangamesh G.
    Brown, Justin L.
    Krogman, Nicholas R.
    Weikel, Arlin L.
    Hindenlang, Mark D.
    Nair, Lakshmi S.
    Allcock, Harry R.
    Laurencin, Cato T.
    BIOMACROMOLECULES, 2008, 9 (07) : 1818 - 1825
  • [8] Preparation of porous hydroxyapatite scaffolds for bone tissue engineering
    Min, Sang-Ho
    Jin, Hyeong-Ho
    Park, Hoy-Yul
    Park, Ik-Min
    Park, Hong-Chae
    Yoon, Seog-Young
    ECO-MATERIALS PROCESSING & DESIGN VII, 2006, 510-511 : 754 - 757
  • [9] Synthesis and characterisation of gelatin-nano hydroxyapatite composite scaffolds for bone tissue engineering
    Mobini, S.
    Javadpour, J.
    Hosseinalipour, M.
    Ghazi-Khansari, M.
    Khavandi, A.
    Rezaie, H. R.
    ADVANCES IN APPLIED CERAMICS, 2008, 107 (01) : 4 - 8
  • [10] A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering
    Kong, Lijun
    Gao, Yuan
    Lu, Guangyuan
    Gong, Yandao
    Zhao, Nanming
    Zhang, Xiufang
    EUROPEAN POLYMER JOURNAL, 2006, 42 (12) : 3171 - 3179