Asymptotic Behaviour of Solutions to the Navier-stokes Equations of a Two-dimensional Compressible Flow

被引:0
|
作者
Ying-hui ZHANG 1
机构
基金
中国国家自然科学基金;
关键词
asymptotic behaviour; Navier-stokes equations; compressible barotropic flow; Orlicz spaces;
D O I
暂无
中图分类号
O175 [微分方程、积分方程]; O354 [气体动力学(可压缩流体力学)];
学科分类号
070104 ; 080103 ; 080704 ;
摘要
In this paper,we are concerned with the asymptotic behaviour of a weak solution to the Navier-Stokes equations for compressible barotropic flow in two space dimensions with the pressure function satisfying p(e) = a log d(e) for large .Here d > 2,a > 0.We introduce useful tools from the theory of Orlicz spaces and construct a suitable function which approximates the density for time going to infinity.Using properties of this function,we can prove the strong convergence of the density to its limit state.The behaviour of the velocity field and kinetic energy is also briefly discussed.
引用
收藏
页码:697 / 712
页数:16
相关论文
共 50 条