Numerical Approximation of a Reaction-Diffusion System with Fast Reversible Reaction

被引:0
|
作者
Robert EYMARD [1 ]
Danielle HILHORST [2 ]
Hideki MURAKAWA [3 ]
Michal OLECH [4 ,5 ]
机构
[1] Université Paris-Est,77454 Marne-la-Vallée Cedex 2,France
[2] Laboratoire de Mathématiques,CNRS and Universit de Paris-Sud 11,91405 Orsay Cédex,France
[3] Graduate School of Science and Engineering for Research,University of Toyama,3190 Gofuku,Toyama930-8555,Japan
[4] Instytut Matematyczny Uniwersytetu Wroclawskiego,pl.,Grunwaldzki 2/4,50-384 Wroclaw,Polska
[5] Laboratoire de Mathématiques,CNRS Université de Paris-Sud,91405 Orsay Cédex,France
关键词
Instantaneous reaction limit; Mass-action kinetics; Finite volume methods; Convergence of approximate solutions; Discrete a priori estimates; Kolmogorov’s theorem;
D O I
暂无
中图分类号
TL327 [反应堆动力学];
学科分类号
082701 ;
摘要
The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction.It is deduced from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies estimates which do not depend on the kinetic rate.It follows that the solution converges to the solution of a nonlinear diffusion problem,as the size of the volume elements and the time steps converge to zero while the kinetic rate tends to infinity.
引用
收藏
页码:631 / 654
页数:24
相关论文
共 50 条