Differential operators for Siegel-Jacobi forms

被引:0
|
作者
YANG Jiong [1 ]
YIN LinSheng [1 ]
机构
[1] Department of Mathematical Sciences, Tsinghua University
基金
中国国家自然科学基金;
关键词
connection; Jacobi form; differential operator;
D O I
暂无
中图分类号
O175.3 [微分算子理论];
学科分类号
070104 ;
摘要
For any positive integers n and m, H;:= H;× C;is called the Siegel-Jacobi space, with the Jacobi group acting on it. The Jacobi forms are defined on this space. We compute the Chern connection of the Siegel-Jacobi space and use it to obtain derivations of Jacobi forms. Using these results, we construct a series of invariant differential operators for Siegel-Jacobi forms. Also two kinds of Maass-Shimura type differential operators for H;are obtained.
引用
收藏
页码:1029 / 1050
页数:22
相关论文
共 50 条