Single-camera stereo-digital image correlation(stereo-DIC) techniques have gained increasing attentions and demonstrated excellent prospects in the experimental mechanics community owing to their prominent advantages of cost-effectiveness,compactness, and the avoidance of the complicated camera synchronization. Using additional optical devices, e.g. a diffraction grating, a bi-prism or a set of planar mirrors, pseudo stereo images of a test sample surface can be recorded with a single camera.By correlating these stereo images using DIC, full-field three-dimensional(3 D) shape and deformation can be retrieved. This review comprehensively summarizes the historical development, methodologies, strengths and weaknesses of the diffraction grating-based, prism-based, four-mirror-adaptor-based single-camera stereo-DIC techniques, and the recently proposed novel full-frame single color camera-based stereo-DIC technique for full-field 3 D shape and deformation measurement. The optical arrangements, principles and calibration procedures of these single-camera stereo-DIC techniques are described in detail. Since high-speed deformation measurement is efficiently achieved by combining the single-camera stereo-DIC with one high-speed camera, single-camera stereo-DIC techniques show great potential in impact engineering, vibration and other dynamic tests.