Partial convergence of heterogeneous Hegselmann-Krause opinion dynamics

被引:0
|
作者
SU Wei [1 ]
GU YaJuan [1 ]
WANG Sha [2 ]
YU YongGuang [1 ]
机构
[1] School of Science,Beijing Jiaotong University
[2] School of Information,Beijing Wuzi University
基金
中国国家自然科学基金;
关键词
convergence; heterogeneous; Hegselmann-Krause model; opinion dynamics; multi-agent systems;
D O I
暂无
中图分类号
O313 [动力学];
学科分类号
080101 ;
摘要
In opinion dynamics,the convergence of the heterogeneous Hegselmann-Krause(HK) dynamics has always been an open problem for years which looks forward to any essential progress.In this short note,we prove a partial convergence conclusion of the general heterogeneous HK dynamics.That is,there must be some agents who will reach static states in finite time,while the other opinions have to evolve between them with a minimum distance if all the opinions does not reach consensus.And this result leads to the convergence of several special cases of heterogeneous HK dynamics,including when the minimum confidence bound is large enough,the initial opinion difference is small enough,and so on.
引用
收藏
页码:1433 / 1438
页数:6
相关论文
共 50 条
  • [1] Partial convergence of heterogeneous Hegselmann-Krause opinion dynamics
    Su, Wei
    Gu, YaJuan
    Wang, Sha
    Yu, YongGuang
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2017, 60 (09) : 1433 - 1438
  • [2] Partial convergence of heterogeneous Hegselmann-Krause opinion dynamics
    SU Wei
    GU YaJuan
    WANG Sha
    YU YongGuang
    [J]. Science China(Technological Sciences)., 2017, 60 (09) - 1438
  • [3] Partial convergence of heterogeneous Hegselmann-Krause opinion dynamics
    Wei Su
    YaJuan Gu
    Sha Wang
    YongGuang Yu
    [J]. Science China Technological Sciences, 2017, 60 : 1433 - 1438
  • [4] On the Hegselmann-Krause conjecture in opinion dynamics
    Kurz, Sascha
    Rambau, Joerg
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (06) : 859 - 876
  • [5] The noisy Hegselmann-Krause model for opinion dynamics
    Miguel Pineda
    Raúl Toral
    Emilio Hernández-García
    [J]. The European Physical Journal B, 2013, 86
  • [6] Phase coexistence in the fully heterogeneous Hegselmann-Krause opinion dynamics model
    Perrier, Remi
    Schawe, Hendrik
    Hernandez, Laura
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [7] Fuzzy Hegselmann-Krause Opinion Dynamics with Opinion Leaders
    Lu, Yi
    Zhao, Yiyi
    Zhang, Jiangbo
    Hu, Jiangping
    Hu, Xiaoming
    [J]. PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 6019 - 6024
  • [8] The noisy Hegselmann-Krause model for opinion dynamics
    Pineda, Miguel
    Toral, Raul
    Hernandez-Garcia, Emilio
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (12):
  • [9] On Convergence Rate of Scalar Hegselmann-Krause Dynamics
    Mohajer, Soheil
    Touri, Behrouz
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 206 - 210
  • [10] On the Convergence Properties of Social Hegselmann-Krause Dynamics
    Parasnis, Rohit Yashodhar
    Franceschetti, Massimo
    Touri, Behrouz
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (02) : 589 - 604