Smallest Close to Regular Bipartite Graphs without an Almost Perfect Matching

被引:0
|
作者
Lutz VOLKMANN [1 ]
Axel ZINGSEM [1 ]
机构
[1] Lehrstuhl Ⅱ für Mathematik, RWTH Aachen University
关键词
Almost perfect matching; bipartite graph; close to regular graph;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
A graph G is close to regular or more precisely a (d, d + k)-graph, if the degree of eachvertex of G is between d and d + k. Let d > 2 be an integer, and let G be a connected bipartite(d, d+ k)-graph with partite sets X and Y such that |X| = |Y| + 1. If G is of order n without an almostperfect matching, then we show in this paper that ·n≥6d + 7 when k = 1, ·n≥4d + 5 when k = 2, ·n≥4d + 3 when k≥3.Examples will demonstrate that the given bounds on the order of G are the best possible.
引用
收藏
页码:1403 / 1412
页数:10
相关论文
共 50 条
  • [1] Smallest close to regular bipartite graphs without an almost perfect matching
    Lutz Volkmann
    Axel Zingsem
    Acta Mathematica Sinica, English Series, 2010, 26 : 1403 - 1412
  • [2] Smallest Close to Regular Bipartite Graphs without an Almost Perfect Matching
    Volkmann, Lutz
    Zingsem, Axel
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (08) : 1403 - 1412
  • [3] On the order of almost regular bipartite graphs without perfect matchings
    Volkmann, Lutz
    Zingsem, Axel
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 42 : 165 - 170
  • [4] Smallest regular and almost regular triangle-free graphs without perfect matchings
    Volkmann, Lutz
    ARS COMBINATORIA, 2013, 111 : 463 - 472
  • [5] On the smallest positive eigenvalue of bipartite graphs with a unique perfect matching
    Barik, Sasmita
    Behera, Subhasish
    Pati, Sukanta
    DISCRETE APPLIED MATHEMATICS, 2024, 347 : 311 - 318
  • [6] On the smallest positive eigenvalue of bipartite unicyclic graphs with a unique perfect matching
    Barik, Sasmita
    Behera, Subhasish
    DISCRETE MATHEMATICS, 2023, 346 (02)
  • [7] Cospectral regular graphs with and without a perfect matching
    Blazsik, Zoltan L.
    Cummings, Jay
    Haemers, Willem H.
    DISCRETE MATHEMATICS, 2015, 338 (03) : 199 - 201
  • [8] On the smallest positive eigenvalue of bipartite unicyclic graphs with a unique perfect matching II
    Barik, Sasmita
    Behera, Subhasish
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (08): : 1356 - 1374
  • [9] Bipartite unicyclic graphs with a unique perfect matching having the smallest positive eigenvalue equal to
    Barik, Sasmita
    Behera, Subhasish
    Kirkland, Steve
    LINEAR & MULTILINEAR ALGEBRA, 2024,
  • [10] Perfect matchings in regular bipartite graphs
    Katerinis, P
    Tsikopoulos, N
    GRAPHS AND COMBINATORICS, 1996, 12 (04) : 327 - 331