On De Giorgi's conjecture: Recent progress and open problems

被引:0
|
作者
Hardy Chan [1 ]
Juncheng Wei [1 ]
机构
[1] Department of Mathematics, University of British Columbia
基金
加拿大自然科学与工程研究理事会;
关键词
De Giorgi’s conjecture; classification of solutions; Allen-Cahn equation; minimal surfaces; Toda systems;
D O I
暂无
中图分类号
O175.1 [常微分方程];
学科分类号
070104 ;
摘要
In 1979,De Giorgi conjectured that the only bounded monotone solutions to the Allen-Cahn equation △u+u-u~3=0 in R~N,are one-dimensional.This conjecture and its connection with minimal surfaces and Toda systems are the subject of this survey article.
引用
收藏
页码:1925 / 1946
页数:22
相关论文
共 50 条