Extrapolation methods to compute hypersingular integral in boundary element methods

被引:0
|
作者
LI Jin [1 ]
ZHANG XiaoPing [2 ]
YU DeHao [3 ,4 ]
机构
[1] School of Science,Shandong Jianzhu University
[2] School of Mathematics and Statistics,Wuhan University
[3] School of Mathematical Sciences,Xiamen University
[4] LSEC,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing
基金
中国国家自然科学基金;
关键词
hypersingular integrals; trapezoidal rule; asymptotic error expansion; extrapolation algorithm;
D O I
暂无
中图分类号
O172.2 [积分学];
学科分类号
0701 ; 070101 ;
摘要
The composite trapezoidal rule for the computation of Hadamard finite-part integrals in boundary element methods with the hypersingular kernel 1/sin 2(x-s) is discussed,and the main part of the asymptotic expansion of error function is obtained.Based on the main part of the asymptotic expansion,a series is constructed to approach the singular point.An extrapolation algorithm is presented and the convergence rate is proved.Some numerical results are also presented to confirm the theoretical results and show the efficiency of the algorithms.
引用
收藏
页码:1648 / 1661
页数:14
相关论文
共 50 条
  • [1] Extrapolation methods to compute hypersingular integral in boundary element methods
    Jin Li
    XiaoPing Zhang
    DeHao Yu
    Science China Mathematics, 2013, 56 : 1647 - 1660
  • [2] Extrapolation methods to compute hypersingular integral in boundary element methods
    Li Jin
    Zhang XiaoPing
    Yu DeHao
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (08) : 1647 - 1660
  • [3] Generalized Extrapolation for Computation of Hypersingular Integrals in Boundary Element Methods
    Li, Jin
    Wu, Ji-ming
    Yu, De-hao
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2009, 42 (02): : 151 - 175
  • [4] QUADRATURE METHODS FOR HYPERSINGULAR BOUNDARY INTEGRAL-EQUATION
    PENZEL, F
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T705 - T708
  • [5] Numerical quadratures for singular and hypersingular integrals in boundary element methods
    Carley, Michael
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (03): : 1207 - 1216
  • [6] Adaptive meshless Galerkin boundary node methods for hypersingular integral equations
    Li, Xiaolin
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) : 4952 - 4970
  • [7] Multi-parameter extrapolation methods for boundary integral equations
    Ulrich Rüde
    Aihui Zhou
    Advances in Computational Mathematics, 1998, 9 : 173 - 190
  • [8] Multi-parameter extrapolation methods for boundary integral equations
    Rude, U
    Zhou, A
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 9 (1-2) : 173 - 190
  • [9] SEISMOLOGICAL APPLICATION OF BOUNDARY INTEGRAL ELEMENT METHODS
    MOBBS, SD
    CLARK, RA
    COCKSHOTT, I
    GREEN, CM
    WARD, WA
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1987, 89 (01): : 462 - 462
  • [10] Boundary element preconditioners for a hypersingular integral equation on an interval
    W. McLean
    O. Steinbach
    Advances in Computational Mathematics, 1999, 11 : 271 - 286