GENERALIZED NEKRASOV MATRICES AND APPLICATIONS

被引:0
|
作者
Mingxian Pang Zhuxiang Li (Dept. of Math
机构
关键词
Nekrasov matrix; Generalized Nekrasov matrix; Generalized diagonally domi- nant matrix;
D O I
暂无
中图分类号
O151.21 [矩阵论];
学科分类号
070104 ;
摘要
In this paper, the concept of generalized Nekrasov matrices is introduced, some properties of these matrices are discussed, obtained equivalent representation of generalized diagonally dominant matrices.
引用
收藏
页码:183 / 188
页数:6
相关论文
共 50 条
  • [1] Generalized Nekrasov matrices and applications
    Pang, MX
    Li, ZX
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2003, 21 (02) : 183 - 188
  • [2] Bounds for the inverses of generalized nekrasov matrices
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2015, 207 (5) : 786 - 794
  • [3] Generalizations of Nekrasov matrices and applications
    Cvetkovic, Ljiljana
    Kostic, Vladimir
    Nedovic, Maja
    OPEN MATHEMATICS, 2015, 13 (01): : 96 - 105
  • [4] The Iterative Criterion for Generalized Nekrasov Matrices
    Guo, Aili
    Xu, Nana
    Liu, Jianzhou
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 83 - 86
  • [5] Error Bounds for Linear Complementarity Problems of Nekrasov and Generalized Nekrasov Matrices
    Wang, Shiyun
    Liu, Dan
    Tian, Wanfu
    Lyu, Zhen-Hua
    ACTA APPLICANDAE MATHEMATICAE, 2024, 191 (01)
  • [6] The Nekrasov diagonally dominant degree on the Schur complement of Nekrasov matrices and its applications
    Liu, Jianzhou
    Zhang, Juan
    Zhou, Lixin
    Tu, Gen
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 320 : 251 - 263
  • [7] On ?-Nekrasov matrices
    Arsic, Dunja
    Nedovic, Maja
    FILOMAT, 2023, 37 (13) : 4335 - 4350
  • [8] On Nekrasov matrices
    Li, W
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 281 (1-3) : 87 - 96
  • [9] Some characterizations of nekrasov and s-nekrasov matrices
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2015, 207 (5) : 767 - 775
  • [10] Bounds for the determinants of nekrasov and S-nekrasov matrices
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2015, 207 (5) : 776 - 785