偶数维带边流形上的一类Kastler-Kalau-Walze类型定理

被引:0
|
作者
包开花 [1 ]
孙爱慧 [2 ]
夏令远 [3 ]
机构
[1] 内蒙古民族大学数理学院
[2] 吉林师范大学数学学院
[3] 东北师范大学数学与统计学院
关键词
带挠率的Dirac算子; 非交换留数; 低维体积; 偶数维带边流形;
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
摘要
在任意偶数维带边Spin流形上建立了一类关于带挠率的Dirac算子的Kastler-Kalau-Walze类型定理,为相应流形上的Einstein-Hilbert作用给出了简单的算子理论解释.
引用
收藏
页码:23 / 33
页数:11
相关论文
共 12 条
  • [2] A Kastler–Kalau–Walze type theorem for 7-dimensional spin manifolds with boundary about Dirac operators with torsion[J] . Kai Hua Bao,Ai Hui Sun,Jian Wang.Journal of Geometry and Physics . 2016
  • [3] A general Kastler–Kalau–Walze type theorem for manifolds with boundary[J] . Jian Wang,Yong Wang.International Journal of Geometric Methods in Modern Physics . 2016 (1)
  • [4] Dirac operators with torsion and the noncommutative residue for manifolds with boundary[J] . Jian Wang,Yong Wang,ChunLing Yang.Journal of Geometry and Physics . 2014
  • [5] Chiral Asymmetry and the Spectral Action
    Pfaeffle, Frank
    Stephan, Christoph A.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 321 (02) : 283 - 310
  • [6] On gravity, torsion and the spectral action principle[J] . Frank Pf?ffle,Christoph A. Stephan.Journal of Functional Analysis . 2011 (4)
  • [7] Noncommutative geometry and lower dimensional volumes in Riemannian geometry
    Ponge, Raphael
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2008, 83 (01) : 19 - 32
  • [8] Differential forms and the Wodzicki residue for manifolds with boundary[J] . Yong Wang.Journal of Geometry and Physics . 2005 (5)
  • [9] A note on the Wodzicki residue
    Ackermann, T
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1996, 20 (04) : 402 - 404
  • [10] A generalized Lichnerowicz formula, the Wodzicki residue and gravity[J] . Thomas Ackermann,Jürgen Tolksdorf.Journal of Geometry and Physics . 1996 (2)