Partition region-based suppressed fuzzy C-means algorithm

被引:0
|
作者
Kun Zhang [1 ]
Weiren Kong [1 ]
Peipei Liu [1 ]
Jiao Shi [1 ]
Yu Lei [1 ]
Jie Zou [2 ]
Min Liu [2 ]
机构
[1] School of Electronics and Information, Northwestern Polytechnical University
[2] Science and Technology on Electro-Optic Control Laboratory
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
shadowed set; suppressed fuzzy C-means clustering; automatically parameter selection; soft computing techniques;
D O I
暂无
中图分类号
TP311.13 [];
学科分类号
1201 ;
摘要
Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the objects, a novel partition region-based suppressed fuzzy C-means clustering algorithm with better capacity of adaptability and robustness is proposed in this paper. The model based on the real needs of different objects is built, making it clear to decide whether to proceed with further determination; in addition, the external user-defined suppressed parameter is automatically selected according to the intrinsic structural characteristic of each dataset, making the proposed method become robust to the fluctuations in the incoming dataset and initial conditions. Experimental results show that the proposed method is more robust than its counterparts and overcomes the weakness of the original suppressed clustering algorithm in most cases.
引用
收藏
页码:996 / 1008
页数:13
相关论文
共 50 条
  • [1] Partition region-based suppressed fuzzy C-means algorithm
    Zhang, Kun
    Kong, Weiren
    Liu, Peipei
    Shi, Jiao
    Lei, Yu
    Zou, Jie
    Liu, Min
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2017, 28 (05) : 996 - 1008
  • [2] Parameter selection for suppressed fuzzy c-means clustering algorithm based on fuzzy partition entropy
    Li, Jing
    Fan, Jiulun
    2014 11TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2014, : 82 - 87
  • [3] Suppressed fuzzy C-means clustering algorithm
    Fan, JL
    Zhen, WZ
    Xie, WX
    PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1607 - 1612
  • [4] A Generalized Approach to the Suppressed Fuzzy c-Means Algorithm
    Szilagyi, Laszlo
    Szilagyi, Sandor M.
    Kiss, Csilla
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI), 2010, 6408 : 140 - 151
  • [5] A Thorough Analysis of the Suppressed Fuzzy C-Means Algorithm
    Szilagyi, Laszlo
    Szilagyi, Sandor M.
    Benyo, Zoltan
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2008, 5197 : 203 - 210
  • [6] Analytical and Numerical Evaluation of the Suppressed Fuzzy C-Means Algorithm
    Szilagyi, Laszlo
    Szilagyi, Sandor M.
    Benyo, Zoltan
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5285 : 146 - +
  • [7] Generalization rules for the suppressed fuzzy c-means clustering algorithm
    Szilagyi, Laszlo
    Szilagyi, Sandor M.
    NEUROCOMPUTING, 2014, 139 : 298 - 309
  • [8] Modified suppressed relative entropy fuzzy c-means clustering algorithm
    Li, Jing
    Hu, Yifan
    Fan, Jiulun
    Yu, Haiyan
    Jia, Bin
    Liu, Rui
    Zhao, Feng
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (03) : 6995 - 7019
  • [9] Analytical and numerical evaluation of the suppressed fuzzy c-means algorithm: a study on the competition in c-means clustering models
    Szilagyi, Laszlo
    Szilagyi, Sandor M.
    Benyo, Zoltan
    SOFT COMPUTING, 2010, 14 (05) : 495 - 505
  • [10] Analytical and numerical evaluation of the suppressed fuzzy c-means algorithm: a study on the competition in c-means clustering models
    László Szilágyi
    Sándor M. Szilágyi
    Zoltán Benyó
    Soft Computing, 2010, 14 : 495 - 505