To accurately analyze the function of transgene(s)of interest in transgenic mice,and togenerate credible transgenic animal models for multifarious human diseases to precisely mimic human dis-ease states,it is critical to tightly regulate gene expression in the animals in a conditional manner.The abilityto turn gene expression on or off in the restricted cells or tissues at specific time permits unprecedentedflexibility in dissecting gene functions in health and disease.Pioneering studies in conditional transgene ex-pression have brought about the development of a wide variety of controlled gene expression systems,whichmeet this criterion.Among them,the tetracycline-controlled expression systems(e.g.Tet-off system andTet-on system)have been used extensively in vitro and in vivo.In recent years,some strategies derived fromtetracycline-inducible system alone,as well as the combined use of Tet-based systems and Cre/lox P switch-ing gene expression system,have been newly developed to allow more flexibility for exploring gene functionsin health and disease,and produce credible transgenic animal models for various human diseases.In thisreview these newly developed strategies are discussed.