Biochip-Based Identification of Mycobacterial Species in Russia

被引:0
|
作者
Zimenkov, Danila [1 ]
Zhuravlev, Vyacheslav [2 ]
Ushtanit, Anastasia [1 ]
Filippova, Marina [1 ]
Semenova, Uliana [1 ]
Solovieva, Natalia [2 ]
Sviridenko, Maria [3 ]
Khakhalina, Anastasia [3 ]
Safonova, Svetlana [3 ]
Makarova, Marina [3 ]
Gordeeva, Elizaveta [4 ]
Guselnikova, Elena [4 ]
Schwartz, Yakov [4 ]
Stavitskaya, Natalia [4 ]
Yablonsky, Peter [2 ]
机构
[1] Russian Acad Sci, Ctr Precis Genome Editing & Genet Technol Biomed, Engelhardt Inst Mol Biol, Moscow 119991, Russia
[2] Minist Healthcare Russian Federat, St Petersburg State Res Inst Phthisiopulmonol, St Petersburg 191036, Russia
[3] Moscow Govt Hlth Dept, Moscow Res & Clin Ctr TB Control, Moscow 107014, Russia
[4] Minist Hlth Russian Federat, Novosibirsk TB Res Inst, Fed State Budgetary Inst, Novosibirsk 630040, Russia
基金
俄罗斯科学基金会;
关键词
mycobacteria; NTM; nontuberculous mycobacteria; biochip; oligonucleotide array; M; petersburgensis; moscowiensis; sibiricum; NONTUBERCULOUS MYCOBACTERIA; PULMONARY-DISEASE; GROWING MYCOBACTERIA; SP NOV; DNA; DIFFERENTIATION; AVIUM; ASSAY; SUSCEPTIBILITY; TUBERCULOSIS;
D O I
10.3390/ijms252313200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Infections caused by nontuberculous mycobacteria (NTM) are rising globally throughout the world. The number of species isolated from clinical samples is steadily growing, which demands the implementation of a robust diagnostic method with wide specificity. This study was carried out in in 2022-2024 in three clinical antituberculosis centers in the biggest cities of Russia: Moscow, Saint Petersburg, and Novosibirsk. We developed the DNA hybridization assay 'Myco-biochip' that allows the identification of 79 mycobacterial species and analyzed 3119 samples from 2221 patients. Sixty-eight mycobacterial species were identified in clinics, including the three novel species phylogenetically related to M. duvalii, M. lentiflavum, and M. talmoniae. The identification of a close relative of M. talmoniae adds to the existence of separate clade between M. terrae, M. triviale complexes and other slow-growing Mycobacteria, which supports the thesis against the splitting of Mycobacteria into five separate genera. Adding to the list of potentially pathogenic species, we identified M. adipatum and M. terramassiliense, which were previously described as natural habitats. The diversity of acid-fast bacilli identified in TB-suspected persons was not limited to the Mycobacteria genus and also includes species from genera Nocardia, Gordonia, Corynebacterium, Tsukamurella, and Rhodococcus of the order Mycobacteriales. The revealed bacterial diversity in patients with suspected NTM-diseases requires the implementation of relevant species identification assays as the first step in the laboratory diagnostic pipeline.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A new handheld biochip-based microsystem
    Lopes, P. A. C.
    Germano, J.
    Almeida, T. M.
    Sousa, L.
    Piedade, M. S.
    Cardoso, F.
    Ferreira, H. A.
    2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, : 2379 - +
  • [2] Current research in biochip-based sensors
    Singh, V. R., Sr.
    2006 Bio- Micro- and Nanosystems Conference, 2006, : 58 - 58
  • [3] Nontuberculous mycobacterial species identification in Russia
    Zimenkov, Danila
    Zhuravlev, Viacheslav
    Ushtanit, Anastasia
    Machinskaya, Maria
    Gordeeva, Elizaveta
    Makarova, Marina
    Safonova, Svetlana
    Stavitskaya, Natalia
    Yablonsky, Petr
    RESPIROLOGY, 2023, 28 : 229 - 230
  • [4] Biochip System for Rapid and Accurate Identification of Mycobacterial Species from Isolates and Sputum
    Zhu, Lingxiang
    Jiang, Guanglu
    Wang, Shengfen
    Wang, Can
    Li, Qiang
    Yu, Hao
    Zhou, Yang
    Zhao, Bing
    Huang, Hairong
    Xing, Wanli
    Mitchelson, Keith
    Cheng, Jing
    Zhao, Yanlin
    Guo, Yong
    JOURNAL OF CLINICAL MICROBIOLOGY, 2010, 48 (10) : 3654 - 3660
  • [5] A biochip-based liver organoid model of human sepsis
    Groeger, M.
    Rennert, K.
    Giszas, B.
    Weiss, E.
    Kiehntopf, M.
    Lupp, A.
    Bauer, M.
    Claus, R. A.
    Huber, O.
    Mosig, A. S.
    INFECTION, 2015, 43 : S4 - S4
  • [6] Protein biochip-based semiquantitative detection for plasma leptin
    Ye, Lei
    Hu, Yuan
    Xu, Fei-Hong
    Cai, Cheng-Yun
    Song, Da-Wei
    Xu, Zhen-Shan
    Du, Wei-Dong
    PROTEOMICS CLINICAL APPLICATIONS, 2017, 11 (5-6)
  • [7] Rapid molecular identification of mycobacterial species in positive culture isolates using the biochip test
    Pang, Y.
    Zhou, Y.
    Wang, S.
    Tan, Y.
    Yue, J.
    Zhao, B.
    Wang, L.
    Zhao, Y.
    Kam, K. M.
    INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 2011, 15 (12) : 1680 - 1684
  • [8] Universal Panel of Insertion/Deletion Polymorphisms and Biochip-Based Kit ChipID106 for Genetic Personal Identification
    Fesenko, D. O.
    Ivanovsky, I. D.
    Ivanov, P. L.
    Zemskova, E. Yu.
    Polyakov, S. A.
    Fesenko, O. E.
    Filippova, M. A.
    Zasedatelev, A. S.
    MOLECULAR BIOLOGY, 2023, 57 (04) : 624 - 636
  • [9] Biochip-based resistance monitoring in pathogenic fungi for clinical diagnostics
    Mai, M.
    Rupp, S.
    Hauser, N.
    INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2007, 297 : 18 - 18
  • [10] Magnetoresistive biochip-based portable platforms for biomolecular recognition detection
    Martins, V.
    Cardoso, F.
    Freitas, P.
    Germano, J.
    Cardoso, S.
    Sousa, L.
    Piedade, M.
    Fonseca, L.
    NEW BIOTECHNOLOGY, 2009, 25 : S358 - S359