Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models

被引:0
|
作者
Chen, Zixiang [1 ]
Deng, Yihe [1 ]
Yuan, Huizhuo [1 ]
Ji, Kaixuan [1 ]
Gu, Quanquan [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
关键词
GAME;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Harnessing the power of human-annotated data through Supervised Fine-Tuning (SFT) is pivotal for advancing Large Language Models (LLMs). In this paper, we delve into the prospect of growing a strong LLM out of a weak one without the need for acquiring additional human-annotated data. We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN), which starts from a supervised fine-tuned model. At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself. More specifically, the LLM generates its own training data from its previous iterations, refining its policy by discerning these self-generated responses from those obtained from human-annotated data. Our method progressively elevates the LLM from a nascent model to a formidable one, unlocking the full potential of human-annotated demonstration data for SFT. Theoretically, we prove that the global optimum to the training objective function of our method is achieved only when the LLM policy aligns with the target data distribution. Empirically, we evaluate our method on several benchmark datasets including the HuggingFace Open LLM Leaderboard, MT-Bench, and datasets from Big-Bench. Our results show that SPIN can significantly improve the LLM's performance across a variety of benchmarks and even outperform models trained through direct preference optimization (DPO) supplemented with extra GPT-4 preference data. This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents. Codes are available at https://github.com/uclaml/SPIN.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Phased Instruction Fine-Tuning for Large Language Models
    Pang, Wei
    Zhou, Chuan
    Zhou, Xiao-Hua
    Wang, Xiaojie
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 5735 - 5748
  • [2] CONVFIT: Conversational Fine-Tuning of Pretrained Language Models
    Vulic, Ivan
    Su, Pei-Hao
    Coope, Sam
    Gerz, Daniela
    Budzianowski, Pawel
    Casanueva, Inigo
    Mrksic, Nikola
    Wen, Tsung-Hsien
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 1151 - 1168
  • [3] Improve Performance of Fine-tuning Language Models with Prompting
    Yang, Zijian Gyozo
    Ligeti-Nagy, Noenn
    INFOCOMMUNICATIONS JOURNAL, 2023, 15 : 62 - 68
  • [4] HackMentor: Fine-Tuning Large Language Models for Cybersecurity
    Zhang, Jie
    Wen, Hui
    Deng, Liting
    Xin, Mingfeng
    Li, Zhi
    Li, Lun
    Zhu, Hongsong
    Sun, Limin
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 452 - 461
  • [5] Fine-tuning language models to recognize semantic relations
    Roussinov, Dmitri
    Sharoff, Serge
    Puchnina, Nadezhda
    LANGUAGE RESOURCES AND EVALUATION, 2023, 57 (04) : 1463 - 1486
  • [6] Fine-tuning language models to recognize semantic relations
    Dmitri Roussinov
    Serge Sharoff
    Nadezhda Puchnina
    Language Resources and Evaluation, 2023, 57 : 1463 - 1486
  • [7] Fine-Tuning Language Models with Just Forward Passes
    Malladi, Sadhika
    Gao, Tianyu
    Nichani, Eshaan
    Damian, Alex
    Lee, Jason D.
    Chen, Danqi
    Arora, Sanjeev
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] Fine-tuning large neural language models for biomedical natural language processing
    Tinn, Robert
    Cheng, Hao
    Gu, Yu
    Usuyama, Naoto
    Liu, Xiaodong
    Naumann, Tristan
    Gao, Jianfeng
    Poon, Hoifung
    PATTERNS, 2023, 4 (04):
  • [9] How fine can fine-tuning be? Learning efficient language models
    Radiya-Dixit, Evani
    Wang, Xin
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2435 - 2442
  • [10] Demystifying Instruction Mixing for Fine-tuning Large Language Models
    Wang, Renxi
    Li, Haonan
    Wu, Minghao
    Wang, Yuxia
    Han, Xudong
    Zhang, Chiyu
    Baldwin, Timothy
    PROCEEDINGS OF THE 62ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 4: STUDENT RESEARCH WORKSHOP, 2024, : 86 - 93