Negative effects of elevated ozone levels on soil microbial characteristics: a meta-analysis

被引:0
|
作者
Lu, Xiaofei [1 ]
Li, Jie [2 ]
Zhou, Xinyi [1 ]
Yue, Xu [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equipm, Sch Environm Sci & Engn, Jiangsu Key Lab Atmospher Environm Monitoring & Po, Nanjing 210044, Peoples R China
[2] Nanjing Univ, Sch Life Sci, Dept Ecol, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Soil microbial community; Soil microbial biomass; Ozone pollution; Soil carbon turnover; Enzyme activity; COMMUNITY COMPOSITION; TROPOSPHERIC OZONE; CARBON-DIOXIDE; O-3; ALLOCATION; MECHANISMS; BACTERIAL; EXPOSURE; BIOMASS; POPLAR;
D O I
10.1007/s11104-025-07309-6
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Background and aimsThe effects of elevated tropospheric ozone (O3) concentrations on terrestrial ecosystems have been extensively researched by numerous O3 fumigation experiments and syntheses. While the detrimental impacts of O3 stress on aboveground plant physiological traits are well-documented, there remains a gap in our understanding of how elevated O3 influences soil microbes and plant-microbe interactions.MethodsHere, we synthesized data from 71 O3 fumigation experiments conducted globally to evaluate the effects of elevated O3 on soil microbial characteristics, including biomass, community composition, and extracellular enzyme activities (EEAs).ResultsElevated O3 led to an average reduction of 14.2% in microbial biomass carbon (MBC). It was largely attributable to decreased plant carbon input, as the effect size of MBC was closely correlated with declines in both aboveground and root biomass. Fungal communities appeared more vulnerable to O3 stress than bacterial communities, as evidenced by a 10.7% decrease in fungal phospholipid fatty acids (PLFAs), while total and bacterial PLFAs were only marginally affected. Furthermore, the negative impacts on microbes intensified with increasing O3 concentrations but tended to diminish over time. In addition, elevated O3 significantly reduced hydrolytic EEAs, which target simple compounds, by 12.9%, while increasing oxidative EEAs, which degrade recalcitrant compounds, by 12.0%. It suggests that O3 stress would affect the decomposition of soil organic matter by shifting EEAs.ConclusionElevated O3 impairs soil microbial growth and changes microbial C utilization strategies, which could profoundly impact C cycling in terrestrial ecosystems.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Effect of elevated tropospheric ozone on soil carbon and nitrogen: a meta-analysis
    Hu, Enzhu
    Ren, Zhimin
    Wang, Xiaoke
    Zhang, Hongxing
    Zhang, Weiwei
    ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (04)
  • [2] Effects of biochar on soil microbial communities: A meta-analysis
    Deshoux, Maelle
    Sadet-Bourgeteau, Sophie
    Gentil, Solene
    Prevost-Boure, Nicolas Chemidlin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 902
  • [3] Effects of Nitrogen Addition on Soil Microbial Biomass: A Meta-Analysis
    He, Chen
    Ruan, Yunze
    Jia, Zhongjun
    AGRICULTURE-BASEL, 2024, 14 (09):
  • [4] Elevated ozone effects on potato leaf physiology, growth, and yield: a meta-analysis
    Okrah, Abraham
    Li, Shenglan
    Agathokleous, Evgenios
    Feng, Zhaozhong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (57) : 120483 - 120495
  • [5] Elevated ozone effects on potato leaf physiology, growth, and yield: a meta-analysis
    Abraham Okrah
    Shenglan Li
    Evgenios Agathokleous
    Zhaozhong Feng
    Environmental Science and Pollution Research, 2023, 30 : 120483 - 120495
  • [6] Elevated Tropospheric Ozone Concentration Alters Soil CO2 Emission: A Meta-Analysis
    Hu, Enzhu
    Ren, Zhimin
    Xu, Sheng
    Zhang, Weiwei
    SUSTAINABILITY, 2021, 13 (08)
  • [7] Meta-analysis reveals the effects of microbial inoculants on the biomass and diversity of soil microbial communities
    Li, Chong
    Chen, Xinli
    Jia, Zhaohui
    Zhai, Lu
    Zhang, Bo
    Grueters, Uwe
    Ma, Shilin
    Qian, Jing
    Liu, Xin
    Zhang, Jinchi
    Mueller, Christoph
    NATURE ECOLOGY & EVOLUTION, 2024, 8 (07): : 1270 - 1284
  • [8] Effects of fire on the soil microbial metabolic quotient: A global meta-analysis
    Liu, Weichao
    Zhang, Zhenjiao
    Li, Jiaxin
    Wen, Yuhao
    Liu, Fuhe
    Zhang, Wei
    Liu, Hanyu
    Ren, Chengjie
    Han, Xinhui
    CATENA, 2023, 224
  • [9] Effects of afforestation on soil microbial diversity and enzyme activity: A meta-analysis
    Huang, Hanyue
    Tian, Di
    Zhou, Luhong
    Su, Haojie
    Ma, Suhui
    Feng, Yuhao
    Tang, Zhiyao
    Zhu, Jiangling
    Ji, Chengjun
    Fang, Jingyun
    GEODERMA, 2022, 423
  • [10] Current ambient and elevated ozone effects on poplar: A global meta-analysis and response relationships
    Feng, Zhaozhong
    Shang, Bo
    Gao, Feng
    Calatayud, Vicent
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 654 : 832 - 840