Accurate prediction of essential proteins using ensemble machine learning

被引:0
|
作者
Lu, Dezhi [1 ]
Wu, Hao [1 ]
Hou, Yutong [2 ]
Wu, Yuncheng [3 ]
Liu, Yuanyuan [1 ]
Wang, Jinwu [1 ,2 ]
机构
[1] Shanghai Univ, Sch Med, Shanghai 200444, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Dept Orthopaed Surg, Shanghai Key Lab Orthopaed Implants,Sch Med, Shanghai 200011, Peoples R China
[3] Univ Shanghai Sci & Technol, Shanghai 200093, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
protein-protein interaction (PPI); essential proteins; deep learning; ensemble learning; NETWORK; FRAMEWORK;
D O I
10.1088/1674-1056/ad8db2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Essential proteins are crucial for biological processes and can be identified through both experimental and computational methods. While experimental approaches are highly accurate, they often demand extensive time and resources. To address these challenges, we present a computational ensemble learning framework designed to identify essential proteins more efficiently. Our method begins by using node2vec to transform proteins in the protein-protein interaction (PPI) network into continuous, low-dimensional vectors. We also extract a range of features from protein sequences, including graph-theory-based, information-based, compositional, and physiochemical attributes. Additionally, we leverage deep learning techniques to analyze high-dimensional position-specific scoring matrices (PSSMs) and capture evolutionary information. We then combine these features for classification using various machine learning algorithms. To enhance performance, we integrate the outputs of these algorithms through ensemble methods such as voting, weighted averaging, and stacking. This approach effectively addresses data imbalances and improves both robustness and accuracy. Our ensemble learning framework achieves an AUC of 0.960 and an accuracy of 0.9252, outperforming other computational methods. These results demonstrate the effectiveness of our approach in accurately identifying essential proteins and highlight its superior feature extraction capabilities.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Accurate prediction of essential proteins using ensemble machine learning
    鲁德志
    吴淏
    侯俞彤
    吴云成
    刘媛媛
    王金武
    Chinese Physics B, 2025, 34 (01) : 112 - 119
  • [2] Accurate Prediction of Human Essential Proteins Using Ensemble Deep Learning
    Li, Yiming
    Zeng, Min
    Wu, Yifan
    Li, Yaohang
    Li, Min
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (06) : 3263 - 3271
  • [3] Ensemble Machine Learning Framework for Accurate Flood Prediction
    Varghese, Akanksha
    Gupta, Vijay Baboo
    Saxena, Mayank
    10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES, CONECCT 2024, 2024,
  • [4] Stacked ensemble model for accurate crop yield prediction using machine learning techniques
    Ramesh, V
    Kumaresan, P.
    ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2025, 7 (03):
  • [5] Accurate Dissolved Oxygen Prediction for Aquaculture Using Stacked Ensemble Machine Learning Model
    Kozhiparamban, Rasheed Abdul Haq
    Swetha, P.
    Harigovindan, V. P.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2023, 46 (03): : 203 - 207
  • [6] Accurate Dissolved Oxygen Prediction for Aquaculture Using Stacked Ensemble Machine Learning Model
    Rasheed Abdul Haq Kozhiparamban
    P. Swetha
    V. P. Harigovindan
    National Academy Science Letters, 2023, 46 : 203 - 207
  • [7] A novel ensemble machine learning method for accurate air quality prediction
    Emec, M.
    Yurtsever, M.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2025, 22 (01) : 459 - 476
  • [8] Obesity Prediction Using Ensemble Machine Learning Approaches
    Jindal, Kapil
    Baliyan, Niyati
    Rana, Prashant Singh
    RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 2, 2018, 708 : 355 - 362
  • [9] Oil Price Prediction Using Ensemble Machine Learning
    Gabralla, Lubna A.
    Jammazi, Rania
    Abraham, Ajith
    2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONICS ENGINEERING (ICCEEE), 2013, : 674 - 679
  • [10] Pitch Accent Prediction Using Ensemble Machine Learning
    Zhang, Aiying
    Ni, Chongjia
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 444 - 447