Novel first-order phase transition and critical points in SU(3) Yang-Mills theory with spatial compactification

被引:0
|
作者
Fujii, Daisuke [1 ,2 ]
Iwanaka, Akihiro [2 ]
Kitazawa, Masakiyo [3 ,4 ]
Suenaga, Daiki [2 ,5 ]
机构
[1] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan
[2] Osaka Univ, Res Ctr Nucl Phys, Ibaraki 5670048, Japan
[3] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[4] KEK Theory Ctr, J PARC Branch, KEK, Tokai 3191106, Japan
[5] Nagoya Univ, Kobayashi Maskawa Inst Origin Particles & Univers, Nagoya 4648602, Japan
基金
日本学术振兴会;
关键词
EQUATION-OF-STATE; LATTICE;
D O I
10.1103/PhysRevD.110.094016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the thermodynamics and phase structure of SU(3) Yang-Mills theory on T-2 x R-2 in Euclidean spacetime in an effective-model approach. The model incorporates two Polyakov loops along two compactified directions as dynamical variables, and is constructed to reproduce thermodynamics on T-2 x R-2 measured on the lattice. The model analysis indicates the existence of a novel first-order phase transition on T-2 x R-2 in the deconfined phase, which terminates at critical points that should belong to the two-dimensional Z(2) universality class. We argue that the interplay of the Polyakov loops induced by their cross-term in the Polyakov-loop potential is responsible for the manifestation of the first-order transition.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] THE ORDER OF THE DECONFINEMENT TRANSITION IN SU(3) YANG-MILLS THEORY
    CELIK, T
    ENGELS, J
    SATZ, H
    PHYSICS LETTERS B, 1983, 125 (05) : 411 - 414
  • [2] THE FIRST-ORDER FORMALISM FOR YANG-MILLS THEORY
    MCKEON, DGC
    CANADIAN JOURNAL OF PHYSICS, 1994, 72 (9-10) : 601 - 607
  • [3] COMPACTIFICATION OF SPACETIME IN SU(INFINITY) YANG-MILLS THEORY
    SHIRAISHI, K
    CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (12) : 2029 - 2034
  • [4] Consistency conditions for the first-order formulation of Yang-Mills theory
    McKeon, D. G. C.
    Brandt, F. T.
    Frenkel, J.
    Martins-Filho, S.
    PHYSICAL REVIEW D, 2020, 101 (08)
  • [5] Topological susceptibility through the deconfinement phase transition in SU(3) Yang-Mills theory
    Alles, B
    DElia, M
    DiGiacomo, A
    NUCLEAR PHYSICS B, 1997, : 348 - 352
  • [6] Chaos-order transition in pure SU(2) Yang-Mills theory
    Kaminaga, Y
    Saito, Y
    PHYSICS LETTERS B, 1998, 426 (3-4) : 347 - 350
  • [7] Latent heat and pressure gap at the first-order deconfining phase transition of SU(3) Yang-Mills theory using the small flow-time expansion method
    Shirogane, Mizuki
    Ejiri, Shinji
    Iwami, Ryo
    Kanaya, Kazuyuki
    Kitazawa, Masakiyo
    Suzuki, Hiroshi
    Taniguchi, Yusuke
    Umeda, Takashi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (01):
  • [8] Pregeometric first order Yang-Mills theory
    Gallagher, Priidik
    Koivisto, Tomi
    Marzola, Luca
    PHYSICAL REVIEW D, 2022, 105 (12)
  • [9] Hedgehogs in Wilson loops and phase transition in SU(2) Yang-Mills theory
    Belavin, V. A.
    Chernodub, M. N.
    Kozlov, I. E.
    NUCLEAR PHYSICS B, 2006, 748 (03) : 524 - 539
  • [10] First-order equations of motion in the supersymmetric yang-mills theory with a scalar multiplet
    Pavlyuk A.M.
    Yatsun V.A.
    Ukrainian Mathematical Journal, 2001, 53 (1) : 67 - 74