Optimization of an Impedance-Matched Test Fixture with the Modal Projection Error

被引:0
|
作者
Schoenherr, T. F. [1 ]
Zwink, B. [2 ]
Schultz, R. [3 ]
机构
[1] Sandia Natl Labs, POB 5800 MS0346, Albuquerque, NM 87185 USA
[2] 2614 Woodland Dr, Ft Dodge, IA 50501 USA
[3] Sandia Natl Labs, POB 5800 MS0840, Albuquerque, NM 87185 USA
关键词
Dynamic; Test; Fixture; Modal; Projection; TOPOLOGY; DESIGN;
D O I
10.1007/s40799-025-00794-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Across many industries and engineering disciplines, components and systems are designed and deployed into their operational environment of intended use. It is the desire of the design agency to be able to predict whether their component or system will function in its shock and vibration environments or if it will fail due to mechanical stresses. One method to determine if the component will survive the shock and vibration environments is to expose the component to the operational environment in a laboratory. One difficulty in executing a representative laboratory test is that the component may not have the same boundary condition in the laboratory as in the operational configuration. This paper examines the use of parameterized optimization to design the test fixture in order to better match the operational configuration. Several frequency and modal-based objective functions are examined for the optimization. The study shows that the Modal Projection Error objective function performs the best of the functions studied. The efficacy of the Modal Projection Error is demonstrated with respect to dynamic test fixture design on several analytical and experimental exemplars.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Impedance-matched hyperlens
    Kildishev, Alexander V.
    Narimanov, Evgenii E.
    OPTICS LETTERS, 2007, 32 (23) : 3432 - 3434
  • [2] Impedance-matched Marx generators
    Stygar, W. A.
    LeChien, K. R.
    Mazarakis, M. G.
    Savage, M. E.
    Stoltzfus, B. S.
    Austin, K. N.
    Breden, E. W.
    Cuneo, M. E.
    Hutsel, B. T.
    Lewis, S. A.
    McKee, G. R.
    Moore, J. K.
    Mulville, T. D.
    Muron, D. J.
    Reisman, D. B.
    Sceiford, M. E.
    Wisher, M. L.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2017, 20 (04):
  • [3] Impedance-matched microwave lens
    Alitalo, Pekka
    Luukkonen, Olli
    Vehmas, Joni
    Tretyakov, Sergei A.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2008, 7 (187-191): : 187 - 191
  • [4] Impedance-matched cavity quantum memory
    Afzelius, Mikael
    Simon, Christoph
    PHYSICAL REVIEW A, 2010, 82 (02)
  • [5] Scaling up of the Impedance-Matched Multi-Axis Test (IMMAT) Technique
    Daborn, P. M.
    SHOCK & VIBRATION, AIRCRAFT/AEROSPACE, ENERGY HARVESTING, ACOUSTICS & OPTICS, VOL 9: PROCEEDINGS OF THE 35TH IMAC, 2017, : 1 - 10
  • [6] JOSEPHSON DEVICES WITH IMPEDANCE-MATCHED RF SOURCES
    LONGACRE, A
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (03): : 265 - 265
  • [7] Impedance-Matched Differential Superconducting Nanowire Detectors
    Colangelo, Marco
    Korzh, Boris
    Allmaras, Jason P.
    Beyer, Andrew D.
    Mueller, Andrew S.
    Zhu, Di
    Smith, Stephen
    Becker, Wolfgang
    Narvaez, Lautaro
    Bienfang, Joshua C.
    Frasca, Simone
    Velasco, Angel E.
    Walter, Alexander B.
    Schmidt, Ekkehart
    Wollman, Emma E.
    Mirin, Richard
    Woo, Sae
    Berggern, Karl K.
    Shaw, Matthew D.
    PHYSICAL REVIEW APPLIED, 2023, 19 (04):
  • [8] Vacuum Impedance-Matched Materials Based on Ferrospinels
    Serebryannikov S.V.
    Serebryannikov S.S.
    Dolgov A.V.
    Yeremtsova L.L.
    Slavinskiy A.Z.
    Bulletin of the Russian Academy of Sciences: Physics, 2022, 86 (09) : 1047 - 1049
  • [9] Impedance-Matched Ceramic Materials Based on Ferrospinels
    Serebryannikov, S.V.
    Dolgov, A.V.
    Serebryannikov, S.S.
    Kovalchuk, V.G.
    Belevtsev, A.M.
    Epaneshnikova, I.K.
    Kryuchkov, V.L.
    Bulletin of the Russian Academy of Sciences: Physics, 2024, 88 (11) : 1763 - 1767
  • [10] Scattering Cross Sections of Impedance-Matched Bodies
    Osipov, Andrey V.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (07) : 3122 - 3126