A Segmentation Method of 3D Liver Image Based on Multi-scale Feature Fusion and Coordinate Attention Mechanism

被引:2
|
作者
Zhang, Meng [1 ,2 ,3 ]
Zhang, Xiaolong [1 ,2 ,3 ]
Deng, He [1 ,2 ,3 ]
Ren, Hongwei [4 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Hubei, Peoples R China
[2] Wuhan Univ Sci & Technol, Inst Big Data Sci & Engn, Wuhan, Hubei, Peoples R China
[3] Hubei Key Lab Intelligent Informat Proc & Real Ti, Wuhan, Hubei, Peoples R China
[4] Wuhan Univ Sci & Technol, Tianyou Hosp, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
3D liver image; semantic segmentation; multi-scale feature fusion; coordinate attention; deep supervision;
D O I
10.1007/978-981-99-4749-2_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the high similarity of organs in 3D liver image and the use of simple connection by U-Net to fuse different semantic features, the segmentation accuracy of network needs to be improved. To solve these problems, this paper proposes a 3D liver semantic segmentation method based on multi-scale feature fusion and coordinate attention mechanism. Firstly, in the encoder section of U-Net, the multi-scale feature fusion module was used to capture multi-scale features; Then, coordinate attention mechanism was used to fuse low-level features and high-level features to locate regions of interest; Finally, the segmentation effect of edge details was improved through a deep supervision mechanism. The experimental results show that: on the LiTS dataset, the dice similarity coefficient (DSC) of this method reaches 96.5%. Compared with the U-3-Net + DC method, the DSC increases by 0.1%, and the relative volume difference (RVD) decreases by 1.09%; On the CHAOS dataset, the DSC of this method reaches 96.8%, and compared with CANet, the DSC increases by 0.2%; On the MRI dataset of a hospital, the DSC of this method reaches 97.2%.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
  • [1] Research on Image Segmentation Method Based on Multi-Scale Feature Fusion and Dual Attention
    Wang, Zhihong
    Wang, Chaoying
    Li, Jianxin
    Wu, Tianxiang
    Li, Jiajun
    Huang, Hongxing
    Jiang, Lai
    Journal of Computers (Taiwan), 2024, 35 (06) : 45 - 54
  • [2] 3D Object Detection Based on Attention and Multi-Scale Feature Fusion
    Liu, Minghui
    Ma, Jinming
    Zheng, Qiuping
    Liu, Yuchen
    Shi, Gang
    SENSORS, 2022, 22 (10)
  • [3] Asphalt mixture image segmentation by RAN-UNet based on attention mechanism and multi-scale feature fusion
    Zhong, Cheng
    Qian, Guoping
    Gong, Xiangbing
    Yu, Huanan
    Cai, Jun
    Ma, Jintao
    ROAD MATERIALS AND PAVEMENT DESIGN, 2024,
  • [4] MSA-Net: Multi-scale feature fusion network with enhanced attention module for 3D medical image segmentation
    Wang, Shuo
    Wang, Yuanhong
    Peng, Yanjun
    Chen, Xue
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 120
  • [5] Self-supervised 3D face reconstruction based on multi-scale feature fusion and dual attention mechanism
    Zhou D.-K.
    Zhang C.
    Yang X.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (10): : 2428 - 2437
  • [6] SSD with multi-scale feature fusion and attention mechanism
    Liu, Qiang
    Dong, Lijun
    Zeng, Zhigao
    Zhu, Wenqiu
    Zhu, Yanhui
    Meng, Chen
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [7] Multi-Scale Feature Extraction Method of Hyperspectral Image with Attention Mechanism
    Xu Zhangchi
    Guo Baofeng
    Wu Wenhao
    You Jingyun
    Su Xiaotong
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (04)
  • [8] SSD with multi-scale feature fusion and attention mechanism
    Qiang Liu
    Lijun Dong
    Zhigao Zeng
    Wenqiu Zhu
    Yanhui Zhu
    Chen Meng
    Scientific Reports, 13 (1)
  • [9] MM-UNet: Multi-attention mechanism and multi-scale feature fusion UNet for tumor image segmentation
    Xing, Yaozheng
    Yuan, Jie
    Liu, Qixun
    Peng, Shihao
    Yan, Yan
    Yao, Junyi
    2023 2ND ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING, CACML 2023, 2023, : 253 - 257
  • [10] Multi-scale hand segmentation method based on attention mechanism
    Zhou, Wenqing
    Dai, Sumin
    Wang, Yangpin
    Wang, Wenrun
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (11) : 1506 - 1518