Interval Forecast Method for Wind Power Based on GCN-GRU

被引:0
|
作者
Zha, Wenting [1 ]
Li, Xueyan [2 ]
Du, Yijun [3 ]
Liang, Yingyu [1 ]
机构
[1] China Univ Min & Technol Beijing, Sch Elect & Control Engn, Beijing 100083, Peoples R China
[2] Beijing Polytech Coll, Sch Elect & Control Engn, Beijing 100042, Peoples R China
[3] Nanjing Inst Technol, Sch Automat, Nanjing 211167, Peoples R China
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 12期
关键词
interval wind power prediction; the LUBE method; an improved loss function; neural network; TPE optimization; MODEL; PREDICTION;
D O I
10.3390/sym16121643
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Interval prediction is to predict the range of power prediction intervals, which can guide electricity production and usage better. To improve further improve the performance of the prediction interval, this paper aims to investigate he wind power interval prediction method based on the lower and upper bound evaluation (LUBE). Firstly, an improved loss function is proposed, which transforms multi-objective optimization problems into single-objective optimization with guidance of mathematical derivation. Afterward, the interval prediction results can be further improved through a combination of graph convolutional network (GCN) and gate recurrent unit (GRU). Then, the tree-structured Parzen estimator (TPE) optimization algorithm optimizes the GCN cell to find the optimal parameter configuration and maximize the performance of the model. Finally, in the experimental part, the proposed GCN-GRU with improved loss function is compared with some current mainstream neural networks. The results show that for any type of network, the improved loss function can obtain prediction intervals with better performance. Especially for the prediction interval based on GCN-GRU, the prediction interval normalized average width (PINAW) and prediction interval relative deviation (PIRD) can reach 6.75% and 46.99%, respectively, while ensuring the given prediction interval nominal confidence (PINC).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Visibility forecast in Jiangsu province based on the GCN-GRU model
    Chen, Huansang
    Xu, Yihang
    Gao, Zhiqiu
    Kang, Jia
    Jiang, Yuncong
    Li, Zheng
    Shen, Huan
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] A Noval Satellite Network Traffic Prediction Method Based on GCN-GRU
    Yang, Li
    Gu, Xiangxiang
    Shi, Huaifeng
    2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2020, : 718 - 723
  • [3] AGG: A Novel Intelligent Network Traffic Prediction Method Based on Joint Attention and GCN-GRU
    Shi, Huaifeng
    Pan, Chengsheng
    Yang, Li
    Gu, Xiangxiang
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021 (2021)
  • [4] A GCN-GRU Based End-to-End LEO Satellite Network Dynamic Topology Prediction Method
    Chen, Yan
    Cao, Huan
    Zhou, Yiqing
    Liu, Zifan
    Chen, Daojin
    Zhao, Jiawei
    Shi, Jinglin
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [5] 基于GCN-GRU的瓦斯浓度时空分布预测
    秦嘉欣
    葛淑伟
    龙凤琪
    张永茜
    李雪
    工矿自动化, 2023, 49 (05) : 82 - 89+111
  • [6] Wind power interval prediction based on GRU-LUBE
    Liu, Yongfeng
    Liu, Fang
    Fan, Yucong Huang Haotian Li Zhen
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 165 - 168
  • [7] 基于GCN-GRU的短期时空负荷预测方法
    朱力
    李成
    郭龙
    刘云鹏
    史炯
    能源与环保, 2022, 44 (04) : 211 - 215+221
  • [8] 基于GCN-GRU组合模型的基坑周边管线沉降预测
    秦世伟
    陆俊宇
    扬州大学学报(自然科学版), 2023, 26 (04) : 73 - 78
  • [9] Checkpoint data-driven GCN-GRU vehicle trajectory and traffic flow prediction
    Guan, Deyong
    Ren, Na
    Wang, Ke
    Wang, Qi
    Zhang, Hualong
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [10] IMPROVED WEIGHTED GRU WIND POWER INTERVAL PREDICTION BASED ON QUANTILE REGRESSION
    Liu, Tianhong
    Qi, Shengli
    Yi, Yang
    Jian, Libin
    Qiao, Xianzhu
    Zhang, Enze
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (12): : 292 - 298