mLongT5: A Multilingual and Efficient Text-To-Text Transformer for Longer Sequences

被引:0
|
作者
Uthus, David [1 ]
Ontanion, Santiago [1 ]
Ainslie, Joshua [1 ]
Guo, Mandy [1 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present our work on developing a multilingual, efficient text-to-text transformer that is suitable for handling long inputs. This model, called mLongT5, builds upon the architecture of LongT5, while leveraging the multilingual datasets used for pretraining mT5 and the pretraining tasks of UL2. We evaluate this model on a variety of multilingual summarization and question-answering tasks, and the results show stronger performance for mLongT5 when compared to existing multilingual models such as mBART or M-BERT.
引用
收藏
页码:9380 / 9386
页数:7
相关论文
共 50 条
  • [1] mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer
    Xue, Linting
    Constant, Noah
    Roberts, Adam
    Kale, Mihir
    Al-Rfou, Rami
    Siddhant, Aditya
    Barua, Aditya
    Raffel, Colin
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 483 - 498
  • [2] mT6: Multilingual Pretrained Text-to-Text Transformer with Translation Pairs
    Chi, Zewen
    Dong, Li
    Ma, Shuming
    Huang, Shaohan
    Mao, Xian-Ling
    Huang, Heyan
    Wei, Furu
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 1671 - 1683
  • [3] A Text-to-Text Model for Multilingual Offensive Language Identification
    Ranasinghe, Tharindu
    Zampieri, Marcos
    13TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING AND THE 3RD CONFERENCE OF THE ASIA-PACIFIC CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, IJCNLP-AACL 2023, 2023, : 375 - 384
  • [4] Homograph Disambiguation with Text-to-Text Transfer Transformer
    Rezackova, Marketa
    Tihelka, Daniel
    Matousek, Jindrich
    INTERSPEECH 2024, 2024, : 2785 - 2789
  • [5] ViT5: Pretrained Text-to-Text Transformer for Vietnamese Language Generation
    Long Phan
    Hieu Tran
    Hieu Nguyen
    Trinh, Trieu H.
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES: PROCEEDINGS OF THE STUDENT RESEARCH WORKSHOP, 2022, : 136 - 142
  • [6] Adapting Pretrained Text-to-Text Models for Long Text Sequences
    Xiong, Wenhan
    Gupta, Anchit
    Toshniwal, Shubham
    Mehdad, Yashar
    Yih, Wen-tau
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 5566 - 5578
  • [7] Distractor Generation Through Text-to-Text Transformer Models
    de-Fitero-Dominguez, David
    Garcia-Lopez, Eva
    Garcia-Cabot, Antonio
    del-Hoyo-Gabaldon, Jesus-Angel
    Moreno-Cediel, Antonio
    IEEE ACCESS, 2024, 12 : 25580 - 25589
  • [8] HaT5: Hate Language Identification using Text-to-Text Transfer Transformer
    Sabry, Sana Sabah
    Adewumi, Tosin
    Abid, Nosheen
    Kovacs, Gyorgy
    Liwicki, Foteini
    Liwicki, Marcus
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [9] TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer
    Berabi, Berkay
    He, Jingxuan
    Raychev, Veselin
    Vechev, Martin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [10] Exploring the limits of transfer learning with a unified text-to-text transformer
    Raffel, Colin
    Shazeer, Noam
    Roberts, Adam
    Lee, Katherine
    Narang, Sharan
    Matena, Michael
    Zhou, Yanqi
    Li, Wei
    Liu, Peter J.
    Journal of Machine Learning Research, 2020, 21