A short proof of Rubin's theorem

被引:0
|
作者
Belk, James [1 ]
Elliott, Luna [2 ]
Matucci, Francesco [3 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow City G12 8QQ, Scotland
[2] Binghamton Univ, Dept Math, Binghamton, NY 13902 USA
[3] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, I-20125 Milan, Italy
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
THOMPSON; AUTOMORPHISMS;
D O I
10.1007/s11856-024-2700-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a remarkable theorem, M. Rubin proved that if a group G acts in a locally dense way on a locally compact Hausdorff space X without isolated points, then the space X and the action of G on X are unique up to G-equivariant homeomorphism. Here we give a short, self-contained proof of Rubin's theorem, using equivalence classes of ultrafilters on a poset to reconstruct the points of the space X.
引用
收藏
页数:13
相关论文
共 50 条