共 50 条
A short proof of Rubin's theorem
被引:0
|作者:
Belk, James
[1
]
Elliott, Luna
[2
]
Matucci, Francesco
[3
]
机构:
[1] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow City G12 8QQ, Scotland
[2] Binghamton Univ, Dept Math, Binghamton, NY 13902 USA
[3] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, I-20125 Milan, Italy
基金:
美国国家科学基金会;
英国工程与自然科学研究理事会;
关键词:
THOMPSON;
AUTOMORPHISMS;
D O I:
10.1007/s11856-024-2700-3
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In a remarkable theorem, M. Rubin proved that if a group G acts in a locally dense way on a locally compact Hausdorff space X without isolated points, then the space X and the action of G on X are unique up to G-equivariant homeomorphism. Here we give a short, self-contained proof of Rubin's theorem, using equivalence classes of ultrafilters on a poset to reconstruct the points of the space X.
引用
收藏
页数:13
相关论文