Unit circle;
Non-uniform nodes;
Jacobi Polynomial;
Rate of Convergence;
Lagrange Interpolation;
Hermite-Fejer interpolation;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The aim of this paper is to study the approximation of functions using a higher-order Hermite-Fejer interpolation process on the unit circle. The system of nodes is composed of vertically projected zeros of Jacobi polynomials onto the unit circle with boundary points at +/- 1. Values of the polynomial and its first four derivatives are fixed by the interpolation conditions at the nodes. Convergence of the process is obtained for analytic functions on a suitable domain, and the rate of convergence is estimated.
机构:
Univ Roma La Sapienza, Ist G Castelnuovo, Dipartimento Matemat, Ple Aldo Moro 2, I-00185 Rome, ItalyUniv Roma La Sapienza, Ist G Castelnuovo, Dipartimento Matemat, Ple Aldo Moro 2, I-00185 Rome, Italy
Della Vecchia, B.
论文数: 引用数:
h-index:
机构:
Mastroianni, G.
Vertesi, P.
论文数: 0引用数: 0
h-index: 0
机构:
Hungarian Acad Sci, Alfred Renyi Inst, H-1364 Budapest, HungaryUniv Roma La Sapienza, Ist G Castelnuovo, Dipartimento Matemat, Ple Aldo Moro 2, I-00185 Rome, Italy
机构:
Cent S Univ, Dept Appl Math & Software, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Dept Appl Math & Software, Changsha 410083, Hunan, Peoples R China
Xiang, Shuhuang
He, Guo
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Dept Appl Math & Software, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Dept Appl Math & Software, Changsha 410083, Hunan, Peoples R China
机构:
Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R ChinaChinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China