HIV OctaScanner: A Machine Learning Approach to Unveil Proteolytic Cleavage Dynamics in HIV-1 Protease Substrates

被引:1
|
作者
Sahibzada, Kashif Iqbal [1 ,2 ]
Shahid, Shumaila [3 ]
Akhter, Mohsina [4 ]
Abid, Rizwan [3 ]
Azhar, Muteeba [3 ]
Hu, Yuansen [1 ]
Wei, Dong-Qing [5 ,6 ,7 ,8 ]
机构
[1] Henan Univ Technol, Coll Biol Engn, Zhengzhou 450001, Peoples R China
[2] Univ Lahore, Fac Allied Hlth Sci, Dept Hlth Profess Technol, Lahore 54570, Pakistan
[3] Univ Punjab, Sch Biochem & Biotechnol, Lahore 54590, Pakistan
[4] Univ Punjab, Sch Biol Sci, Lahore 54590, Pakistan
[5] Shanghai Jiao Tong Univ, State Key Lab Microbial Metab, Joint Int Res Lab Metab & Dev Sci, Shanghai 200030, Peoples R China
[6] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200030, Peoples R China
[7] Qihe Lab, Hebi 458030, Henan, Peoples R China
[8] Zhongjing Res & Industrializat Inst Chinese Med, Nanyang 473006, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1021/acs.jcim.4c01808
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The rise of resistance to antiretroviral drugs due to mutations in human immunodeficiency virus-1 (HIV-1) protease is a major obstacle to effective treatment. These mutations alter the drug-binding pocket of the protease and reduce the drug efficacy by disrupting interactions with inhibitors. Traditional methods, such as biochemical assays and structural biology, are crucial for studying enzyme function but are time-consuming and labor-intensive. To address these challenges, we developed HIV OctaScanner, a machine learning algorithm that predicts the proteolytic cleavage activity of octameric substrates at the HIV-1 protease cleavage sites. The algorithm uses a Random Forest (RF) classifier and achieves a prediction accuracy of 89% in the identification of cleavable octamers. This innovative approach facilitates the rapid screening of potential substrates for HIV-1 protease, providing critical insights into enzyme function and guiding the development of more effective therapeutic strategies. By improving the accuracy of substrate identification, HIV OctaScanner has the potential to support the development of next generation antiretroviral treatments
引用
收藏
页码:640 / 648
页数:9
相关论文
共 50 条
  • [1] Machine learning for HIV-1 protease cleavage site prediction
    Lumini, Alessandra
    Nanni, Loris
    PATTERN RECOGNITION LETTERS, 2006, 27 (13) : 1537 - 1544
  • [2] A novel HIV vaccine approach: targeting the protease cleavage sites of HIV-1
    Luo, M.
    Tang, D.
    Capina, R.
    Yuan, X. -Y.
    Prego, C.
    Pinto, J. C.
    Alonso, M.
    Barry, C.
    Pilon, R.
    Daniuk, C.
    Tuff, J.
    Pillet, S.
    La, D.
    Bielawny, T.
    Czarnecki, C.
    Lacap, P.
    Peters, H.
    Wong, G.
    Kimani, M.
    Wachihi, C.
    Kimani, J.
    Ball, T.
    Sandstrom, P.
    Kobinger, G.
    Plummer, F.
    JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2012, 15 : 29 - 30
  • [3] Effectively predicting HIV-1 protease cleavage sites by using an ensemble learning approach
    Hu, Lun
    Li, Zhenfeng
    Tang, Zehai
    Zhao, Cheng
    Zhou, Xi
    Hu, Pengwei
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [4] Effectively predicting HIV-1 protease cleavage sites by using an ensemble learning approach
    Lun Hu
    Zhenfeng Li
    Zehai Tang
    Cheng Zhao
    Xi Zhou
    Pengwei Hu
    BMC Bioinformatics, 23
  • [5] Incorporating the Coevolving Information of Substrates in Predicting HIV-1 Protease Cleavage Sites
    Hu, Lun
    Hu, Pengwei
    Luo, Xin
    Yuan, Xiaohui
    You, Zhu-Hong
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (06) : 2017 - 2028
  • [6] Cleavage of cellular proteins by the HIV-1 protease
    Korant, BD
    Rizzo, CJ
    Lu, ZC
    Strack, P
    Frey, MW
    PROTEOLYSIS IN CELL FUNCTIONS, 1997, 13 : 520 - 523
  • [7] AUTOPROTEOLYTIC CLEAVAGE OF PURIFIED HIV-1 PROTEASE
    FORSBERG, G
    ZACHRISSON, K
    LARSSON, B
    LEVINE, RL
    HARTMANIS, M
    FASEB JOURNAL, 1991, 5 (04): : A453 - A453
  • [8] The Application of Deep Learning in the Prediction of HIV-1 Protease Cleavage Site
    Lu, Xinyu
    Wang, Lifang
    Jiang, Zejun
    2018 5TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2018, : 1299 - 1304
  • [9] Classification of HIV-1 Protease Inhibitors by Machine Learning Methods
    Li, Yang
    Tian, Yujia
    Qin, Zijian
    Yan, Aixia
    ACS OMEGA, 2018, 3 (11): : 15837 - 15849
  • [10] Specificity of the HIV-1 Protease on Substrates Representing the Cleavage Site in the Proximal Zinc-Finger of HIV-1 Nucleocapsid Protein
    Motyan, Janos Andras
    Miczi, Mario
    Oroszlan, Stephen
    Tozser, Jozsef
    VIRUSES-BASEL, 2021, 13 (06):