Sweet Potato Yield Prediction Using Machine Learning Based on Multispectral Images Acquired from a Small Unmanned Aerial Vehicle

被引:0
|
作者
Singh, Kriti [1 ]
Huang, Yanbo [2 ]
Young, Wyatt [2 ]
Harvey, Lorin [3 ]
Hall, Mark [3 ]
Zhang, Xin [4 ]
Lobaton, Edgar [1 ]
Jenkins, Johnie [2 ]
Shankle, Mark [3 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27606 USA
[2] USDA ARS, Genet & Sustainable Agr Res Unit, Mississippi State, MS 39762 USA
[3] Mississippi State Univ, Pontotoc Ridge Flatwoods Branch Expt Stn, Pontotoc, MS 38863 USA
[4] Mississippi State Univ, Dept Agr & Biol Engn, Mississippi State, MS 39762 USA
来源
AGRICULTURE-BASEL | 2025年 / 15卷 / 04期
关键词
sweet potato; yield; remote sensing; unmanned aerial vehicle; machine learning; VEGETATION INDEX; REFLECTANCE; ALGORITHMS; BAND;
D O I
10.3390/agriculture15040420
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Accurate prediction of sweet potato yield is crucial for effective crop management. This study investigates the use of vegetation indices (VIs) extracted from multispectral images acquired by a small unmanned aerial vehicle (UAV) throughout the growing season, along with in situ-measured plant physiological parameters, to predict sweet potato yield. The data acquisition process through UAV field imaging is discussed in detail along with the extraction process for the multispectral bands that we use as features. The experiment is designed with a combination of different nitrogen application rates and cover crop treatments. The dependence of VIs and crop physiological parameters, such as leaf chlorophyll content, plant biomass, vine length, and leaf nitrogen content, on yield is evaluated through feature selection methods and model performance. Classical machine learning (ML) approaches and tree-based algorithms, like XGBoost and Random Forest, are implemented. Additionally, a soft-voting ML model ensemble approach is employed to improve performance of yield prediction. Individual models are trained and tested for different cover crop and nitrogen treatments to capture the relationships between the treatments and the target yield variable. The performance of the ML algorithms is evaluated using various popular model performance metrics like R2, RMSE, and MAE. Through modelling the data for cover crops and nitrogen treatment rates using individual models, the relationships and effects of different treatments on yield are explored. Important VIs useful for the study are identified through feature selection and model performance evaluation.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Plant-level prediction of potato yield using machine learning and unmanned aerial vehicle (UAV) multispectral imagery
    Tatsumi, Kenichi
    Usami, Tamano
    DISCOVER APPLIED SCIENCES, 2024, 6 (12)
  • [2] YIELD PREDICTION OF POTATO BY UNMANNED AERIAL VEHICLE
    Tanabe, Dai
    Ichiura, Shigeru
    Nakatsubo, Ayumi
    Kobayashi, Takashi
    Katahira, Mitsuhiko
    PROCEEDING OF 7TH INTERNATIONAL CONFERENCE ON TRENDS IN AGRICULTURAL ENGINEERING 2019, 2019, : 540 - 546
  • [3] Estimating potassium in potato plants based on multispectral images acquired from unmanned aerial vehicles
    Ma, YanPeng
    Chen, ZhiChao
    Fan, YiGuang
    Bian, MingBo
    Yang, GuiJun
    Chen, RiQiang
    Feng, HaiKuan
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [4] Diagnostic Feed Values of Natural Grasslands Based on Multispectral Images Acquired by Small Unmanned Aerial Vehicle
    Gao, Rui
    Kong, Qingming
    Wang, Hongguang
    Su, Zhongbin
    RANGELAND ECOLOGY & MANAGEMENT, 2019, 72 (06) : 916 - 922
  • [5] Mapping Reflectance Anisotropy of a Potato Canopy Using Aerial Images Acquired with an Unmanned Aerial Vehicle
    Roosjen, Peter P. J.
    Suomalainen, Juha M.
    Bartholomeus, Harm M.
    Kooistra, Lammert
    Clevers, Jan G. P. W.
    REMOTE SENSING, 2017, 9 (05)
  • [6] Wheat Yield Estimation Based on Unmanned Aerial Vehicle Multispectral Images and Texture Feature Indices
    Kang, Yiliang
    Wang, Yang
    Fan, Yanmin
    Wu, Hongqi
    Zhang, Yue
    Yuan, Binbin
    Li, Huijun
    Wang, Shuaishuai
    Li, Zhilin
    AGRICULTURE-BASEL, 2024, 14 (02):
  • [7] Sugarcane yield prediction and genotype selection using unmanned aerial vehicle-based hyperspectral imaging and machine learning
    Poudyal, Chiranjibi
    Costa, Lucas Fideles
    Sandhu, Hardev
    Ampatzidis, Yiannis
    Odero, Dennis Calvin
    Arbelo, Orlando Coto
    Cherry, Ronald H.
    AGRONOMY JOURNAL, 2022, 114 (04) : 2320 - 2333
  • [8] Prediction Dynamics in Cotton Aphid Using Unmanned Aerial Vehicle Multispectral Images and Vegetation Indices
    Jiang, Pingan
    Zhou, Xuelin
    Liu, Tonglai
    Guo, Xiaohu
    Ma, Deying
    Zhang, Cong
    Li, Yan
    Liu, Shuangyin
    IEEE ACCESS, 2023, 11 : 5908 - 5918
  • [9] Unmanned aerial vehicle images in the machine learning for agave detection
    Escobar-Flores, Jonathan Gabriel
    Sandoval, Sarahi
    Gamiz-Romero, Eduardo
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (41) : 61662 - 61673
  • [10] Unmanned aerial vehicle images in the machine learning for agave detection
    Jonathan Gabriel Escobar-Flores
    Sarahi Sandoval
    Eduardo Gámiz-Romero
    Environmental Science and Pollution Research, 2022, 29 : 61662 - 61673