Performance of vibration and current signals in the fault diagnosis of induction motors using deep learning and machine learning techniques

被引:1
|
作者
Ayankoso, Samuel [1 ]
Dutta, Ananta [2 ]
He, Yinghang [1 ]
Gu, Fengshou [1 ]
Ball, Andrew [1 ]
Pal, Surjya K. [2 ]
机构
[1] Univ Huddersfield, Ctr Efficiency & Performance Engn, Huddersfield HD1 3DH, England
[2] Indian Inst Technol, Dept Mech Engn, Kharagpur, India
关键词
Induction motor; fault diagnosis; machine learning; deep learning; mechanical faults; MAINTENANCE; TRANSFORM; HILBERT; SYSTEM;
D O I
10.1177/14759217241289874
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Induction motors (IMs) play a pivotal role in various industrial applications, powering critical systems such as pumps, compressors, fans, blowers, and refrigeration and air conditioning systems. Monitoring the health of these IMs is essential for ensuring reliable operation. Numerous sensors, including vibration, current, temperature, acoustic, and power sensors, can be employed for their health monitoring. This article conducts a comprehensive comparative analysis of two widely used sensors-vibration and current, for classifying different health states of IMs, such as a healthy condition, bearing fault, and misalignment. The study employed deep learning techniques, specifically 1D and 2D convolutional neural networks, trained on raw data. Additionally, machine learning techniques, including random forest and XGBoost, were utilized and trained on features derived from preprocessed signals using fast Fourier transform and discrete wavelet decomposition. Comparative results indicated that vibration signals achieved remarkably high accuracy, nearly 100%, in detecting the investigated mechanical faults, while current signals, after signal processing and manual feature extraction, achieved an accuracy of 87.41%. These results demonstrate that, though current sensors are a viable alternative to vibration sensors, their performance can be affected by the type and degree of the considered faults. This study also highlights the attributes of vibration and current signals in the health monitoring of rotating machinery such as IMs.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Bearing Fault Diagnosis Using Machine Learning and Deep Learning Techniques
    Dhanush, N. Sai
    Ambika, P. S.
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 309 - 321
  • [2] The detection of bearing faults for induction motors by using vibration signals and machine learning
    Irgat, Eyup
    Cinar, Eyup
    Unsal, Abdurrahman
    2021 IEEE 13TH INTERNATIONAL SYMPOSIUM ON DIAGNOSTICS FOR ELECTRICAL MACHINES, POWER ELECTRONICS AND DRIVES (SDEMPED), 2021, : 447 - 453
  • [3] Support Vector Machine Based Bearing Fault Diagnosis for Induction Motors Using Vibration Signals
    Hwang, Don-Ha
    Youn, Young-Woo
    Sun, Jong-Ho
    Choi, Kyeong-Ho
    Lee, Jong-Ho
    Kim, Yong-Hwa
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2015, 10 (04) : 1558 - 1565
  • [4] Machine learning approaches for fault detection and diagnosis of induction motors
    Belguesmi, Lamia
    Hajji, Mansour
    Mansouri, Majdi
    Harkat, Mohamed-Faouzi
    Kouadri, Abdelmalek
    Nounou, Hazem
    Nounou, Mohamed
    PROCEEDINGS OF THE 2020 17TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD 2020), 2020, : 692 - 698
  • [5] A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing
    Si-Yu Shao
    Wen-Jun Sun
    Ru-Qiang Yan
    Peng Wang
    Robert X Gao
    Chinese Journal of Mechanical Engineering, 2017, 30 : 1347 - 1356
  • [6] A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing
    Shao, Si-Yu
    Sun, Wen-Jun
    Yan, Ru-Qiang
    Wang, Peng
    Gao, Robert X.
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2017, 30 (06) : 1347 - 1356
  • [7] A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing
    Si-Yu Shao
    Wen-Jun Sun
    Ru-Qiang Yan
    Peng Wang
    Robert X Gao
    Chinese Journal of Mechanical Engineering, 2017, 30 (06) : 1347 - 1356
  • [8] Bearing Fault Diagnosis of Induction Motors Using a Genetic Algorithm and Machine Learning Classifiers
    Toma, Rafia Nishat
    Prosvirin, Alexander E.
    Kim, Jong-Myon
    SENSORS, 2020, 20 (07)
  • [9] Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals
    Yang, BS
    Kim, KJ
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2006, 20 (02) : 403 - 420
  • [10] Machine Learning-Based Fault Diagnosis for Single- and Multi-Faults in Induction Motors Using Measured Stator Currents and Vibration Signals
    Ali, Mohammad Zawad
    Shabbir, Md Nasmus Sakib Khan
    Liang, Xiaodong
    Zhang, Yu
    Hu, Ting
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2019, 55 (03) : 2378 - 2391