Optimizing data transmission in 6G software defined networks using deep reinforcement learning for next generation of virtual environments

被引:2
|
作者
Naguib, Khaled Mohamed [1 ]
Ibrahim, Ibrahim Ismail [2 ]
Elmessalawy, Mahmoud Mohamed [2 ]
Abdelhaleem, Ahmed Mostafa [2 ]
机构
[1] New Giza Univ NGU, Sch Engn, CCAS Dept, Giza, Egypt
[2] Helwan Univ, Fac Engn, Dept Elect & Commun, Cairo, Egypt
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
6G cellular networks; Virtual reality; Software defined network; Deep reinforcement learning; Network slicing; Latency; Achievable data rate;
D O I
10.1038/s41598-024-75575-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Data transmission of Virtual Reality (VR) plays an important role in delivering a powerful VR experience. This increasing demand on both high bandwidth and low latency. 6G emerging technologies like Software Defined Network (SDN) and resource slicing are acting as promising technologies for addressing the transmission requirements of VR users. Efficient resource management becomes dominant to ensure a satisfactory user experience. The integration of Deep Reinforcement Learning (DRL) allows for dynamic network resource balancing, minimizing communication latency and maximizing data transmission rates wirelessly. Employing slicing techniques further aids in managing distributed resources across the network for different services as enhanced Mobile Broadband (eMBB) and Ultra-Reliable and Low Latency Communications (URLLC). The proposed VR-based SDN system model for 6G cellular networks facilitates centralized administration of resources, enhancing communication between VR users. This innovative solution seeks to contribute to the effective and streamlined resource management essential for VR video transmission in 6G cellular networks. The utilization of Deep Reinforcement Learning (DRL) approaches, is presented as an alternative solution, showcasing significant performance and feature distinctions through comparative results. Our results show that implementing strategies based on DRL leads to a considerable improvement in the resource management process as well as in the achievable data rate and a reduction in the necessary latency in dynamic and large scale networks.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] DROM: Optimizing the Routing in Software-Defined Networks With Deep Reinforcement Learning
    Yu, Changhe
    Lan, Julong
    Guo, Zehua
    Hu, Yuxiang
    IEEE ACCESS, 2018, 6 : 64533 - 64539
  • [2] A Deep Learning Assisted Software Defined Security Architecture for 6G Wireless Networks: IIoT Perspective
    Rahman, Md. Abdur
    Hossain, M. Shamim
    IEEE WIRELESS COMMUNICATIONS, 2022, 29 (02) : 52 - 59
  • [3] Federated Deep Reinforcement Learning for Open RAN Slicing in 6G Networks
    Abouaomar, Amine
    Taik, Afaf
    Filali, Abderrahime
    Cherkaoui, Soumaya
    IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (02) : 126 - 132
  • [4] Software Defined 5G and 6G Networks: a Survey
    Qingyue Long
    Yanliang Chen
    Haijun Zhang
    Xianfu Lei
    Mobile Networks and Applications, 2022, 27 : 1792 - 1812
  • [5] Software Defined 5G and 6G Networks: a Survey
    Long, Qingyue
    Chen, Yanliang
    Zhang, Haijun
    Lei, Xianfu
    MOBILE NETWORKS & APPLICATIONS, 2022, 27 (05): : 1792 - 1812
  • [6] Dynamic Telemetry and Deep Neural Networks for Anomaly Detection in 6G Software-Defined Networks
    Rzym, Grzegorz
    Masny, Amadeusz
    Cholda, Piotr
    ELECTRONICS, 2024, 13 (02)
  • [7] Load-Balanced Virtual Network Embedding Based on Deep Reinforcement Learning for 6G Regional Satellite Networks
    Zhu, Ruijie
    Li, Gong
    Zhang, Yudong
    Fang, Zhengru
    Wang, Jingjing
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (11) : 14631 - 14644
  • [8] Optimizing network slicing in 6G networks through a hybrid deep learning strategy
    Dangi, Ramraj
    Lalwani, Praveen
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (14): : 20400 - 20420
  • [9] A Deep Reinforcement Learning based Routing Scheme for LEO Satellite Networks in 6G
    Hsu, Yi-Huai
    Lee, Jiun-Ian
    Xu, Feng-Ming
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [10] A Big Data Deep Reinforcement Learning Approach to Next Generation Green Wireless Networks
    He, Ying
    Zhang, Zheng
    Zhang, Yanhua
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,