On the Relation between Sensitivity and Accuracy in In-Context Learning

被引:0
|
作者
Chen, Yanda [1 ]
Zhao, Chen [2 ]
Yu, Zhou [1 ]
McKeown, Kathleen [1 ]
He, He [2 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
[2] NYU, New York, NY 10003 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In-context learning (ICL) suffers from oversensitivity to the prompt, making it unreliable in real-world scenarios. We study the sensitivity of ICL with respect to multiple perturbation types. First, we find that label bias obscures the true sensitivity, and therefore prior work may have significantly underestimated ICL sensitivity. Second, we observe a strong negative correlation between ICL sensitivity and accuracy: predictions sensitive to perturbations are less likely to be correct. Motivated by these findings, we propose SENSEL, a few-shot selective prediction method that abstains from sensitive predictions. Experiments on ten classification datasets show that SENSEL consistently outperforms two commonly used confidence-based and entropy-based baselines on abstention decisions.
引用
收藏
页码:155 / 167
页数:13
相关论文
共 50 条
  • [1] In-Context In-Context Learning with Transformer Neural Processes
    Ashman, Matthew
    Diaconu, Cristiana
    Weller, Adrian
    Turner, Richard E.
    SYMPOSIUM ON ADVANCES IN APPROXIMATE BAYESIAN INFERENCE, 2024, 253 : 1 - 29
  • [2] A glance at in-context learning
    Wu, Yongliang
    Yang, Xu
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (05)
  • [3] The Learnability of In-Context Learning
    Wies, Noam
    Levine, Yoav
    Shashua, Amnon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [4] Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection
    Bai, Yu
    Chen, Fan
    Wang, Huan
    Xiong, Caiming
    Mei, Song
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [5] What In-Context Learning "Learns" In-Context: Disentangling Task Recognition and Task Learning
    Pan, Jane
    Gao, Tianyu
    Chen, Howard
    Chen, Danqi
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 8298 - 8319
  • [6] Learning To Retrieve Prompts for In-Context Learning
    Rubin, Ohad
    Herzig, Jonathan
    Berant, Jonathan
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 2655 - 2671
  • [7] In-context learning of state estimators
    Busetto, R.
    Breschi, V.
    Forgione, M.
    Piga, D.
    Formentin, S.
    IFAC PAPERSONLINE, 2024, 58 (15): : 145 - 150
  • [8] Generative Calibration for In-context Learning
    Jiang, Zhongtao
    Zhang, Yuanzhe
    Liu, Cao
    Zhao, Jun
    Liu, Kang
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 2312 - 2333
  • [9] Distinguishability Calibration to In-Context Learning
    Li, Hongjing
    Yan, Hanqi
    Li, Yanran
    Qian, Li
    He, Yulan
    Gui, Lin
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 1385 - 1397
  • [10] Requirements Satisfiability with In-Context Learning
    Santos, Sarah
    Breaux, Travis
    Norton, Thomas
    Haghighi, Sara
    Ghanavati, Sepideh
    32ND IEEE INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE, RE 2024, 2024, : 168 - 179