On the Minimum Distance of Subspace Codes Generated by Linear Cellular Automata

被引:0
|
作者
Mariot, Luca [1 ]
Mazzone, Federico [1 ]
机构
[1] Univ Twente, Semant Cybersecur & Serv Grp, Drienerlolaan 5, NL-7511 GG Enschede, Netherlands
关键词
cellular automata; network coding; finite fields; Grassmannian; greatest common divisor; Sylvester matrix;
D O I
10.1007/978-3-031-42250-8_8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Motivated by applications to noncoherent network coding, we study subspace codes defined by sets of linear cellular automata (CA). As a first remark, we show that a family of linear CA where the local rules have the same diameter-and thus the associated polynomials have the same degree-induces a Grassmannian code. Then, we prove that the minimum distance of such a code is determined by the maximum degree occurring among the pairwise greatest common divisors (GCD) of the polynomials in the family. Finally, we consider the setting where all such polynomials have the same GCD, and determine the cardinality of the corresponding Grassmannian code. As a particular case, we show that if all polynomials in the family are pairwise coprime, the resulting Grassmannian code has the highest minimum distance possible.
引用
收藏
页码:105 / 119
页数:15
相关论文
共 50 条
  • [1] On computing the minimum distance of linear codes
    Mohri, Masami
    Morii, Masakatu
    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 2000, 83 (11): : 32 - 42
  • [2] Minimum distance of linear codes and the α-invariant
    Garrousian, Mehdi
    Tohaneanu, Stefan O.
    ADVANCES IN APPLIED MATHEMATICS, 2015, 71 : 190 - 207
  • [3] On computing the minimum distance of linear codes
    Mohri, M
    Morii, M
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2000, 83 (11): : 32 - 42
  • [4] Linear quantum codes of minimum distance three
    Ruihu Li
    Xueliang Li
    Zongben Xu
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (06) : 917 - 923
  • [5] Distribution of the Minimum Distance of Random Linear Codes
    Hao, Jing
    Huang, Han
    Livshyts, Galyna, V
    Tikhomirov, Konstantin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (10) : 6388 - 6401
  • [6] Distribution of the Minimum Distance of Random Linear Codes
    Hao, Jing
    Huang, Han
    Livshyts, Galyna
    Tikhomirov, Konstantin
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 114 - 119
  • [7] Minimum distance decoding algorithms for linear codes
    Barg, A
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, 1997, 1255 : 1 - 14
  • [8] Construction of linear codes with large minimum distance
    Braun, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1687 - 1691
  • [9] Some Properties of Fractals Generated by Linear Cellular Automata
    倪天佳
    Tsinghua Science and Technology, 2003, (05) : 557 - 563
  • [10] MINIMUM-DISTANCE BOUNDS FOR BINARY LINEAR CODES
    HELGERT, HJ
    STINAFF, RD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (03) : 344 - 356