A novel hybrid model based on evolving multi-quantile long and short-term memory neural network for ultra-short-term probabilistic forecasting of photovoltaic power

被引:1
|
作者
Zhu, Jianhua [1 ]
He, Yaoyao [1 ]
机构
[1] Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
关键词
Quantile regression; Evolutive distributed chaotic particle swarm; optimization (EDCPSO); Photovoltaic (PV) power forecasting; Probabilistic forecasting; PARTICLE SWARM OPTIMIZATION; DEEP BELIEF NETWORK; ELECTRICITY CONSUMPTION; REGRESSION; SELECTION;
D O I
10.1016/j.apenergy.2024.124601
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Probabilistic forecasting is extremely crucial in eliminating uncertainty in photovoltaic (PV) power generation. Quantile regression long and short-term memory neural network (QRLSTM) is widely recognized as promising methods for PV power probabilistic forecasting due to their strong generalization ability. However, these models train the model for each quantile individually, which lacks consideration of the correlation and monotonicity between quantiles, and multiple training leads to excessive computational complexity. Furthermore, the non-differentiable pinball loss function generated by QR places significant demands on the optimization algorithms. To address these issues, this paper proposes an evolutive distributed chaotic particle swarm optimization (EDCPSO)-optimized multi-quantile LSTM (MQLSTM) to achieve high-quality probabilistic PV power prediction. MQLSTM is a multi-output network structure that simultaneously outputs all quantile estimates and adopts a loss function with all quantile scores and non-crossing constraints to guide the training of the model. This approach not only improves the quality and reasonableness of quantile estimations, but also reduces computational difficulty. Then, from the perspective of evolutionary computation, considering the weight parameters of each connection layer in MQLSTM as decision variables, we convert the probabilistic forecasting into an optimization problem and propose a EDCPSO to solve the training difficulty. It implements a targeted distributed chaos strategy based on the evolutionary state to improve convergence speed and search capability. The proposed model is tested to be superior in real cases.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Memory long and short term time series network for ultra-short-term photovoltaic power forecasting
    Huang, Congzhi
    Yang, Mengyuan
    ENERGY, 2023, 279
  • [2] Short-Term Photovoltaic Power Forecasting Based on Long Short Term Memory Neural Network and Attention Mechanism
    Zhou, Hangxia
    Zhang, Yujin
    Yang, Lingfan
    Liu, Qian
    Yan, Ke
    Du, Yang
    IEEE ACCESS, 2019, 7 : 78063 - 78074
  • [3] Ultra-short-term wind power forecasting based on long short-term memory network with modified honey badger algorithm
    Guo, Lei
    Xu, Chang
    Yu, Tianhang
    Wumaier, Tuerxun
    Han, Xingxing
    ENERGY REPORTS, 2024, 12 : 3548 - 3565
  • [4] Ultra-short-term wind power prediction model based on long and short term memory network
    Zhang Q.
    Tang Z.
    Wang G.
    Yang Y.
    Tong Y.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (10): : 275 - 281
  • [5] Forecasting a Short-Term Photovoltaic Power Model Based on Improved Snake Optimization, Convolutional Neural Network, and Bidirectional Long Short-Term Memory Network
    Wang, Yonggang
    Yao, Yilin
    Zou, Qiuying
    Zhao, Kaixing
    Hao, Yue
    SENSORS, 2024, 24 (12)
  • [6] Accurate ultra-short-term load forecasting based on load characteristic decomposition and convolutional neural network with bidirectional long short-term memory model
    Zhang, Mingyue
    Han, Yang
    Zalhaf, Amr S.
    Wang, Chaoyang
    Yang, Ping
    Wang, Congling
    Zhou, Siyu
    Xiong, Tianlong
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2023, 35
  • [7] Transfer Learning for Photovoltaic Power Forecasting with Long Short-Term Memory Neural Network
    Zhou, Siyu
    Zhou, Lin
    Mao, Mingxuan
    Xi, Xinze
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 125 - 132
  • [8] Short-Term Photovoltaic Power Forecast Based on Long Short-Term Memory Network
    Shi, Min
    Xu, Ke
    Wang, Jue
    Yin, Rui
    Wang, Tieqiang
    Yong, Taiyou
    Hongyuan, Tianjin
    PROCEEDINGS OF 2019 IEEE 3RD INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC), 2019, : 2110 - 2116
  • [9] Decomposition strategy and attention-based long short-term memory network for multi-step ultra-short-term agricultural power load forecasting
    Yang, Feifei
    Fu, Xueqian
    Yang, Qiang
    Chu, Zheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [10] Short-term Forecasting Approach Based on bidirectional long short-term memory and convolutional neural network for Regional Photovoltaic Power Plants
    Li, Gang
    Guo, Shunda
    Li, Xiufeng
    Cheng, Chuntian
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2023, 34