PINK1/Parkin-Mediated Mitophagy Ameliorates Mitochondrial Dysfunction in Lacrimal Gland Acinar Cells During Aging

被引:1
|
作者
Zhao, Han [1 ,2 ]
Zhang, Yue [3 ,4 ,5 ,6 ]
Ren, Yujie [3 ,7 ]
Wang, Wanpeng [3 ,4 ,5 ,6 ]
机构
[1] Cent South Univ, Dept Ophthalmol, Xiangya Hosp 2, Changsha, Hunan, Peoples R China
[2] Hunan Clin Res Ctr Ophthalm Dis, Changsha, Hunan, Peoples R China
[3] Cent South Univ, Eye Ctr Xiangya Hosp, 87Xiangya Rd, Changsha 410008, Peoples R China
[4] Hunan Key Lab Ophthalmol, Changsha, Peoples R China
[5] Xiangya Hosp, Natl Clin Res Ctr Geriatr Disorders, Changsha, Peoples R China
[6] Xiangya Hosp, Natl Key Clin Specialty Ophthalmol, Changsha, Peoples R China
[7] Xian No 1 Hosp, Dept Ophthalmol, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
aged; mitophagy; lacrimal gland acinar cells; mitochondria; rapamycin; SECRETORY PHENOTYPE; SENESCENCE; INFLAMMATION; MECHANISMS; MICE;
D O I
10.1167/iovs.65.13.12
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PURPOSE. Aging alters the function of the lacrimal gland and disrupts the balance of the microenvironment on the ocular surface, eventually leading to aqueous-tear-deficient dry eye. Mitophagy has been reported to play an important role in aging, but the underlying mechanism remains unclear. METHODS. The young (6 weeks) and middle-aged (12 months) male C57BL/6J mice were used in this study, and mitophagy agonist rapamycin and inhibitor Mdivi-1 were used in in vivo experiments. Hematoxylin and eosin, Masson, Oil Red O, and reactive oxygen species (ROS) staining were used to detect histological changes and lipids in lacrimal gland. Changes in the expression of proteins were identified by Western blotting of lacrimal gland lysates. Transmission electron microscopy and immunofluorescence staining were used to assess mitophagy. The single-cell RNA sequencing (scRNA-seq) and bioinformatics analyses were used to detect transcription signature changes during aging. RESULTS. In this study, we discovered that aging increased oxidative stress, which increased apoptosis, and generated ROS in acinar epithelial cells. Furthermore, activation of PINK1/Parkin-mediated mitophagy by rapamycin reduced lacrimal gland ROS concentrations and prevented aging-induced apoptosis of acinar cells, thereby causing histological alterations, microstructural degradation, and increasing tear secretion associated with ROS accumulation. By contrast, Mdivi-1 aggregates mitochondrial function and thereafter leads to lacrimal gland function impairment by inhibiting mitochondrial fission and giving rise to mitophagy. CONCLUSIONS. Overall, our findings suggested that aging could impair mitochondrial function of acinar cells, and age-related alterations may be treated with therapeutic approaches that enhance mitophagy while maintaining mitochondrial function.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] PINK1/Parkin-mediated mitophagy in mammalian cells
    Eiyama, Akinori
    Okamoto, Koji
    CURRENT OPINION IN CELL BIOLOGY, 2015, 33 : 95 - 101
  • [2] PINK1/Parkin-mediated mitophagy in neurodegenerative diseases
    Li, Jie
    Yang, Dongming
    Li, Zhiping
    Zhao, Mengyang
    Wang, Dongdong
    Sun, Zhixin
    Wen, Pei
    Dai, Yuexin
    Gou, Fengting
    Ji, Yilan
    Zhao, Deming
    Yang, Lifeng
    AGEING RESEARCH REVIEWS, 2023, 84
  • [3] Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy
    Ivankovic, Davor
    Chau, Kai-Yin
    Schapira, Anthony H. V.
    Gegg, Matthew E.
    JOURNAL OF NEUROCHEMISTRY, 2016, 136 (02) : 388 - 402
  • [4] PINK1/Parkin-mediated mitophagy in mechanical ventilation-induced diaphragmatic dysfunction
    Yong, Hui
    Zhou, Yun
    Ye, Wanlin
    Li, Tianmei
    Wu, Gangming
    Chen, Jingyuan
    Liu, Li
    Wei, Jicheng
    THERAPEUTIC ADVANCES IN RESPIRATORY DISEASE, 2021, 15
  • [5] Pink1/Parkin-Mediated Mitophagy Regulated the Apoptosis of Dendritic Cells in Sepsis
    Yaolu Zhang
    Longwang Chen
    Yinan Luo
    Kang Wang
    Xinyong Liu
    Zhong Xiao
    Guangju Zhao
    Yongming Yao
    Zhongqiu Lu
    Inflammation, 2022, 45 : 1374 - 1387
  • [6] Pink1/Parkin-Mediated Mitophagy Regulated the Apoptosis of Dendritic Cells in Sepsis
    Zhang, Yaolu
    Chen, Longwang
    Luo, Yinan
    Wang, Kang
    Liu, Xinyong
    Xiao, Zhong
    Zhao, Guangju
    Yao, Yongming
    Lu, Zhongqiu
    INFLAMMATION, 2022, 45 (03) : 1374 - 1387
  • [7] Gefitinib facilitates PINK1/Parkin-mediated mitophagy by enhancing mitochondrial recruitment of OPTN
    Li, Ningning
    Sun, Shan
    Ma, Guoqiang
    Hou, Hongyu
    Ma, Qilian
    Zhang, Li
    Zhang, Zengli
    Wang, Hongfeng
    Ying, Zheng
    FUNDAMENTAL RESEARCH, 2022, 2 (05): : 807 - 816
  • [8] Involvement of PINK1/Parkin-mediated mitophagy in AGE-induced cardiomyocyte aging
    Zha, Zhimin
    Wang, Junhong
    Wang, Xiangming
    Lu, Miao
    Guo, Yan
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2017, 227 : 201 - 208
  • [9] PINK1/Parkin-Mediated Mitophagy Promotes Resistance to Sonodynamic Therapy
    Song, Lin
    Huang, Yongmin
    Hou, Xuandi
    Yang, Yaoheng
    Kala, Shashwati
    Qiu, Zhihai
    Zhang, Rui
    Sun, Lei
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 49 (05) : 1825 - 1839
  • [10] Benzopyrene represses mitochondrial fission factors and PINK1/ Parkin-mediated mitophagy in primary astrocytes
    Paing, Yunn Me Me
    Eom, Yunkyung
    Lee, Sung Hoon
    TOXICOLOGY, 2024, 508