Stable STFT Phase Retrieval and Poincaré Inequalities

被引:0
|
作者
Rathmair, Martin [1 ]
机构
[1] Univ Vienna, Res Network DataSci UniVie, Kolingasse 14-16, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1093/imrn/rnae233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In recent work [P. Grohs and M. Rathmair. Stable Gabor Phase Retrieval and Spectral Clustering. Communications on Pure and Applied Mathematics (2018) and P. Grohs and M. Rathmair. Stable Gabor phase retrieval for multivariate functions. Journal of the European Mathematical Society (2021)], the instabilities of Gabor phase retrieval problem, that is, reconstructing $ f\in L<^>{2}(\mathbb{R})$ from its spectrogram, $|\mathcal{V}_{g} f|$ where $$ \begin{align*} & \mathcal{V}_g f(x,\xi) = \int_{\mathbb{R}} f(t)\overline{g(t-x)}e<^>{-2\pi i \xi t}\,\mbox{d}t, \end{align*} $$ have been classified in terms of the connectivity of the measurements. These findings were however crucially restricted to the case where the window $g(t)=e<^>{-\pi t<^>{2}}$ is Gaussian. In this work we establish a corresponding result for a number of other window functions including the one-sided exponential $g(t)=e<^>{-t}{1\kern-3.4pt1}_{[0,\infty )}(t)$ and $g(t)=\exp (t-e<^>{t})$. As a by-product we establish a modified version of Poincar & eacute;'s inequality, which can be applied to non-differentiable functions and may be of independent interest.
引用
收藏
页码:14094 / 14114
页数:21
相关论文
共 50 条
  • [1] Poincaré-type inequalities for stable densities
    Giuseppe Toscani
    Ricerche di Matematica, 2019, 68 : 225 - 236
  • [2] On Foundational Discretization Barriers in STFT Phase Retrieval
    Philipp Grohs
    Lukas Liehr
    Journal of Fourier Analysis and Applications, 2022, 28
  • [3] On Foundational Discretization Barriers in STFT Phase Retrieval
    Grohs, Philipp
    Liehr, Lukas
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (02)
  • [4] Uniqueness of STFT phase retrieval for bandlimited functions
    Alaifari, Rima
    Wellershoff, Matthias
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 50 : 34 - 48
  • [5] STFT Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms
    Jaganathan, Kishore
    Eldar, Yonina C.
    Hassibi, Babak
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (04) : 770 - 781
  • [6] Uniqueness of STFT Phase Retrieval for Bandlimited Vector Functions
    Zhang, Qingyue
    Guo, Zhenli
    Liu, Bei
    Li, Rui
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (04) : 311 - 331
  • [7] Local Poincaré inequalities from stable curvature conditions on metric spaces
    Tapio Rajala
    Calculus of Variations and Partial Differential Equations, 2012, 44 : 477 - 494
  • [8] Injectivity Conditions for STFT Phase Retrieval on Z, Zd and Rd
    Bartusel, David
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2023, 29 (04)
  • [9] NON-UNIQUENESS THEORY IN SAMPLED STFT PHASE RETRIEVAL
    Grohs, Philipp
    Liehr, Lukas
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (05) : 4695 - 4726
  • [10] Uniqueness of STFT phase retrieval in shift-invariant spaces
    Li, Rui
    Liu, Bei
    Zhang, Qingyue
    APPLIED MATHEMATICS LETTERS, 2021, 118