Functional alterations of the magnocellular subdivision of the visual sensory thalamus in autism

被引:1
|
作者
Schelinski, Stefanie [1 ,2 ]
Kauffmann, Louise [2 ,3 ]
Tabas, Alejandro [2 ,4 ,5 ]
Mueller-Axt, Christa [1 ,2 ]
von Kriegstein, Katharina [1 ,2 ]
机构
[1] Tech Univ Dresden, Fac Psychol, Chair Cognit & Clin Neurosci, D-01187 Dresden, Germany
[2] Max Planck Inst Human Cognit & Brain Sci, D-04303 Leipzig, Germany
[3] Univ Grenoble Alpes, Lab Psychol & Neurocognit, F-38000 Grenoble, France
[4] Basque Ctr Cognit Brain & Language, San Sebastian 20009, Spain
[5] Basque Fdn Sci, Ikerbasque, E-48011 Bilbao, Spain
基金
欧洲研究理事会;
关键词
magnocellular; lateral geniculate nucleus; 7T-fMRI; Autism; visual motion; PERCEPTION; CHILDREN;
D O I
10.1073/pnas.2413409121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The long- standing hypothesis that autism is linked to changes in the visual magnocellular system of the human brain has never been directly examined due to technological to investigate this hypothesis within the visual sensory thalamus (lateral geniculate nucleus, LGN). The LGN is a crucial component of the primary visual pathway. It is particularly suited to investigate the magnocellular visual system, because within the LGN, the magnocellular (mLGN) uniquely segregates from the parvocellular (pLGN) (BOLD) responses in the autism group compared to controls. pLGN responses were comparable across groups. The mLGN alterations were observed specifically for stimuli optimized for mLGN function, i.e., visual displays with low spatial frequency and high temporal flicker frequency. The results confirm the long- standing hypothesis of magnocellular visual system alterations in autism. They substantiate the emerging perspective that sensory processing variations are part of autism symptomatology.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Dysfunction of the magnocellular subdivision of the visual thalamus in developmental dyslexia
    Mueller-Axt, Christa
    Kauffmann, Louise
    Eichner, Cornelius
    von Kriegstein, Katharina
    BRAIN, 2024,
  • [2] Functional interdependence of sensory cortex and thalamus
    de Barenne, JGD
    McCulloch, WS
    JOURNAL OF NEUROPHYSIOLOGY, 1941, 4 (04) : 304 - 310
  • [3] The sensory thalamus and visual midbrain in mouse lemurs
    Saraf, Mansi P.
    Balaram, Pooja
    Pifferi, Fabien
    Kennedy, Henry
    Kaas, Jon H.
    JOURNAL OF COMPARATIVE NEUROLOGY, 2019, 527 (15) : 2599 - 2611
  • [4] Visual sensory processing deficits in schizophrenia: Is there anything to the magnocellular account?
    Lalor, Edmund C.
    De Sanctis, Pierfilippo
    Krakowski, Menahem I.
    Foxe, John J.
    SCHIZOPHRENIA RESEARCH, 2012, 139 (1-3) : 246 - 252
  • [5] CENTRAL PAIN IN THE ABSENCE OF FUNCTIONAL SENSORY THALAMUS
    PARRENT, AG
    LOZANO, AM
    DOSTROVSKY, JO
    TASKER, RR
    STEREOTACTIC AND FUNCTIONAL NEUROSURGERY, 1992, 59 (1-4) : 9 - 14
  • [6] Morphological Alterations in the Thalamus, Striatum, and Pallidum in Autism Spectrum Disorder
    Schuetze, Manuela
    Park, Min Tae M.
    Cho, Ivy Y. K.
    MacMaster, Frank P.
    Chakravarty, M. Mallar
    Bray, Signe L.
    NEUROPSYCHOPHARMACOLOGY, 2016, 41 (11) : 2627 - 2637
  • [7] Morphological Alterations in the Thalamus, Striatum, and Pallidum in Autism Spectrum Disorder
    Manuela Schuetze
    Min Tae M Park
    Ivy YK Cho
    Frank P MacMaster
    M Mallar Chakravarty
    Signe L Bray
    Neuropsychopharmacology, 2016, 41 : 2627 - 2637
  • [8] The Functional State of Magnocellular and Parvocellular Visual Pathways in Depression
    Shoshina, Irina
    Isajeva, Elena
    Mukhitova, Julianna
    Tregubenko, Ilija
    Khanko, Aleksandr
    PERCEPTION, 2019, 48 : 175 - 175
  • [9] The functional state of magnocellular and parvocellular visual pathways in schizophrenia
    Shoshina, I. I.
    Shelepin, Y. E.
    Vershinina, E. A.
    Pronin, S. V.
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2018, 131 : S122 - S123
  • [10] FUNCTIONAL SUBDIVISION OF PERCEPTUAL SPACE IN THE VISUAL FIELD
    Bao, Yan
    Poeppel, Ernst
    COGNITIVE PROCESSING, 2012, 13 : S5 - S6