Global existence of mild solutions for 3D stochastic Boussinesq system in Besov spaces

被引:0
|
作者
Sun, Jinyi [1 ]
Li, Ning [1 ,2 ]
Yang, Minghua [3 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
[2] Ningxia Normal Univ, Grad Sch, Guyuan, Peoples R China
[3] Jiangxi Univ Finance & Econ, Dept Math, Nanchang, Peoples R China
基金
中国国家自然科学基金;
关键词
global solutions; stochastic Boussinesq system; NAVIER-STOKES EQUATIONS; 3-DIMENSIONAL PRIMITIVE EQUATIONS; WELL-POSEDNESS; REGULARITY; THEOREM;
D O I
10.1002/mana.202300526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is concerned with the three-dimensional stochastic Boussinesq system driven by an additive white noise, describing the motion of viscous incompressible fluids with density stratification phenomenon in the rotational framework. By striking new balances between the smoothing effects of the Laplacian dissipation and dispersion effects caused by the Coriolis force and density stratification, we prove existence and uniqueness of global mild solutions to the three-dimensional stochastic Boussinesq system for arbitrarily large initial data and stochastic external forces in Besov spaces, provided that the stratification parameter is large enough. Our results can be regarded as a generalization of [Math. Nachr. 290(2017), 613-631] and [Indiana Univ. Math. J. 66(2017), 2037-2070].
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Global Solutions to 3D Rotating Boussinesq Equations in Besov Spaces
    Sun, Jinyi
    Liu, Chunlan
    Yang, Minghua
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (02) : 589 - 603
  • [2] Global Solutions to 3D Rotating Boussinesq Equations in Besov Spaces
    Jinyi Sun
    Chunlan Liu
    Minghua Yang
    Journal of Dynamics and Differential Equations, 2020, 32 : 589 - 603
  • [3] Global existence and analyticity of mild solutions for the stochastic Navier-Stokes-Coriolis equations in Besov spaces
    Wang, Weihua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 52
  • [4] On the global existence for the axisymmetric Euler-Boussinesq system in critical Besov spaces
    Sulaiman, Samira
    ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) : 89 - 121
  • [5] On the stability of global solutions to the 3D Boussinesq system
    Liu, Xiaopan
    Li, Yuxiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 580 - 591
  • [6] Global existence and uniqueness of Yudovich's solutions to the 3D Newton-Boussinesq system
    Ma, Hongyan
    Zhang, Qian
    APPLICABLE ANALYSIS, 2018, 97 (10) : 1814 - 1827
  • [7] Local and global solvability for the Boussinesq system in Besov spaces
    Yan, Shuokai
    Wang, Lu
    Zhang, Qinghua
    OPEN MATHEMATICS, 2024, 22 (01):
  • [8] On the existence of global solutions for the 3D chemorepulsion system
    Cieslak, Tomasz
    Fuest, Mario
    Hajduk, Karol
    Sierzega, Mikolaj
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2024, 43 (1-2): : 49 - 65
  • [9] Global Existence of Solutions of the Navier-Stokes-Maxwell System in Besov Spaces
    Bai, Haifeng
    Li, Li
    JOURNAL OF MATHEMATICAL STUDY, 2019, 52 (01): : 98 - 110
  • [10] A blow-up criterion for 3D Boussinesq equations in Besov spaces
    Qiu, Hua
    Du, Yi
    Yao, Zheng'an
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (03) : 806 - 815