A Parameter-Efficient Learning Approach to Arabic Dialect Identification with Pre-Trained General-Purpose Speech Model

被引:1
|
作者
Radhakrishnan, Srijith [1 ,2 ,4 ]
Yang, Chao-Han Huck [1 ,3 ]
Khan, Sumeer Ahmad [1 ,4 ]
Kiani, Narsis A. [1 ]
Gomez-Cabrero, David [1 ]
Tegner, Jesper N. [1 ,4 ]
机构
[1] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
[2] Manipal Inst Technol, Manipal, India
[3] Georgia Inst Technol, Atlanta, GA USA
[4] SDAIA KAUST Ctr Excellence Data Sci & Artificial, Thuwal 23952, Saudi Arabia
来源
关键词
Parameter-Efficient Learning; Dialect Identification; Arabic Dialect;
D O I
10.21437/Interspeech.2023-1407
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this work, we explore Parameter-Efficient-Learning (PEL) techniques to repurpose a General-Purpose-Speech (GSM) model for Arabic dialect identification (ADI). Specifically, we investigate different setups to incorporate trainable features into a multi-layer encoder-decoder GSM formulation under frozen pre-trained settings. Our architecture includes residual adapter and model reprogramming (input-prompting). We design a token-level label mapping to condition the GSM for Arabic Dialect Identification (ADI). We achieve new state-of-the-art accuracy on the ADI-17 dataset by vanilla fine-tuning. We further reduce the training budgets with the PEL method, which performs within 1.86% accuracy to fine-tuning using only 2.5% of (extra) network trainable parameters. Our study demonstrates how to identify Arabic dialects using a small dataset and limited computation with open source code at https://github.com/Srijith-rkr/KAUST-Whisper-Adapter
引用
收藏
页码:1958 / 1962
页数:5
相关论文
共 50 条
  • [1] Parameter-Efficient Tuning for Object Tracking by Migrating Pre-Trained Decoders
    Zhang, Ruijuan
    Wang, Li
    Yang, Song
    ELECTRONICS, 2024, 13 (23):
  • [2] BYOL for Audio: Exploring Pre-Trained General-Purpose Audio Representations
    Niizumi, Daisuke
    Takeuchi, Daiki
    Ohishi, Yasunori
    Harada, Noboru
    Kashino, Kunio
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 137 - 151
  • [3] Evaluating Parameter-Efficient Finetuning Approaches for Pre-trained Models on the Financial Domain
    Olariu, Isabella
    Lothritz, Cedric
    Klein, Jacques
    Bissyande, Tegawende F.
    Guo, Siwen
    Haddadan, Shohreh
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 15482 - 15491
  • [4] An Empirical Analysis of Parameter-Efficient Methods for Debiasing Pre-Trained Language Models
    Xie, Zhongbin
    Lukasiewicz, Thomas
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 15730 - 15745
  • [5] FedPETuning: When Federated Learning Meets the Parameter-Efficient Tuning Methods of Pre-trained Language Models
    Zhang, Zhuo
    Yang, Yuanhang
    Dai, Yong
    Wang, Qifan
    Yu, Yue
    Que, Lizhen
    Xu, Zenglin
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 9963 - 9977
  • [6] REDUCING COMMUNICATION OVERHEAD IN FEDERATED LEARNING FOR PRE-TRAINED LANGUAGE MODELS USING PARAMETER-EFFICIENT FINETUNING
    Malaviya, Shubham
    Shukla, Manish
    Lodha, Sachin
    CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 232, 2023, 232 : 456 - 469
  • [7] ADT: An Additive Delta-Tuning approach for parameter-efficient tuning in pre-trained language models
    Li, Dong
    Tang, Jintao
    Li, Shasha
    Wang, Ting
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 382 - 386
  • [8] Attention Prompt Tuning: Parameter-efficient Adaptation of Pre-trained Models for Action Recognition
    Bandara, Wele Gedara Chaminda
    Patel, Vishal M.
    2024 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, FG 2024, 2024,
  • [9] OpenDelta: A Plug-and -play Library for Parameter-efficient Adaptation of Pre-trained Models
    Hu, Shengding
    Ding, Ning
    Zhao, Weilin
    Lv, Xingtai
    Zhang, Zhen
    Liu, Zhiyuan
    Sun, Maosong
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-DEMO 2023, VOL 3, 2023, : 274 - 281
  • [10] Towards Parameter-Efficient Integration of Pre-Trained Language Models In Temporal Video Grounding
    Shimomoto, Erica K.
    Marrese-Taylor, Edison
    Takamur, Hiroya
    Kobayashi, Ichiro
    Nakayama, Hideki
    Miyao, Yusuke
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 13101 - 13123