Mod p points on shimura varieties of parahoric level

被引:0
|
作者
van Hoften, Pol [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
来源
FORUM OF MATHEMATICS PI | 2024年 / 12卷
基金
英国工程与自然科学研究理事会;
关键词
IRREDUCIBLE COMPONENTS; INTEGRAL MODELS; ISOCRYSTALS;
D O I
10.1017/fmp.2024.22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the mod F<overline>(p)-points of the Kisin--Pappas integral models of Shimura varieties of Hodge type with parahoric level. We show that if the group is quasi-split, then every isogeny class contains the reduction of a CM point, proving a conjecture of Kisin--Madapusi-Pera--Shin. We furthermore show that the mod p isogeny classes are of the form predicted by the Langlands--Rapoport conjecture if either the Shimura variety is proper or if the group at p is unramified. The main ingredient in our work is a global argument that allows us to reduce the conjecture to the case of very special parahoric level. This case is dealt with in the appendix by Rong Zhou. As a corollary to our arguments, we determine the connected components of Ekedahl-Oort strata.
引用
收藏
页数:67
相关论文
共 50 条