Thermal insulation and high-temperature resistant cement-based materials with different pore structure characteristics: Performance and high-temperature testing

被引:0
|
作者
Huang, Zhen [1 ,2 ]
Luo, Yuke [1 ]
Zhang, Wenjun [1 ,2 ]
Ye, Zhangqian [1 ]
Li, Zhengyan [1 ]
Liang, Yiyan [1 ]
机构
[1] Guangxi Univ, Sch Civil Engn & Architecture, Nanning 530004, Peoples R China
[2] Guangxi Univ, State Key Lab Featured Met Mat & Life cycle Safety, Nanning 530004, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Cement-based materials; Heat resistance; Defoaming powder; Pore structure; Mechanical properties; MECHANICAL-PROPERTIES; CONCRETE; CONDUCTIVITY; COMPOSITES; STRENGTH; AGGREGATE; AEROGELS; PERLITE; IMPROVEMENT;
D O I
10.1016/j.jobe.2025.111839
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Pore structure is a key factor affecting the fire resistance of cement-based fireproof materials. In this study, a heat-insulating and heat-resistant cement-based material (PABC-perlite-aerogelbasalt-cement) was prepared by adding expanded perlite (EP), SiO2 aerogel (SA), basalt fibre (BF) and standard sand as raw materials. Ether defoaming powder (DP) was subsequently added to improve the pore structure of PABC by decomposing and eliminating air bubbles to increase its fire resistance. The physical, thermal, mechanical and microstructural characteristics of PABC before and after temperature treatments of 20 degrees C, 200 degrees C, 400 degrees C, 600 degrees C, and 800 degrees C with different DP dosages were analysed to better understand the working mechanism of DP and the mechanism by which DP indirectly slows the high-temperature deterioration of PABC. The results revealed that increasing the DP dosage decreased the porosity and effectively improved the 28 d compressive strength and tensile strength of PABC, which reached 38.35-47.74 MPa and 2.50-2.84 MPa, respectively. Moreover, the coefficient of thermal conductivity of PABC was 0.31-0.7 times lower than that of ordinary cement mortar. The specimen surfaces did not exhibit any bursting after high-temperature calcination, and the porosity of the specimens increased with increasing temperature. Small pores gradually decreased, whereas large pores and oversized pores gradually increased, and the pore structure deteriorated. In particular, at a calcination temperature of 600 degrees C, the internal steam pressure owing to excessive implosion effect (R2D6), compressive strength and tensile strength of the specimens significantly decreased. Furthermore, with an appropriate pore structure (R2D1), the internal steam pressure was fully released. After calcination at 800 degrees C, the specimen still exhibited a compressive strength of 5.60 MPa and a tensile strength of 0.99 MPa, which enhanced the fire-resistant properties of PABC. DP plays an important role in regulating the pore structure characteristics to alleviate the high-temperature deterioration of PABC.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] THERMAL PERFORMANCE OF HIGH-TEMPERATURE INSULATION MATERIALS IN AEROSPACE ENVIRONMENTS
    SKRABEK, EA
    TYE, RP
    DESJARLAIS, AO
    REVUE INTERNATIONALE DES HAUTES TEMPERATURES ET DES REFRACTAIRES, 1979, 16 (04): : 361 - 370
  • [2] Review of High-Temperature Thermal Insulation Materials
    Tychanicz-Kwiecien, Maria
    Wilk, Joanna
    Gil, Pawel
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2019, 33 (01) : 271 - 284
  • [3] HIGH-TEMPERATURE THERMAL INSULATION
    BRASSELL, GW
    WEI, GC
    CARBON, 1980, 18 (01) : 63 - 63
  • [4] Mechanical properties and microstructure of cement-based materials by different high-temperature curing methods: A review
    Yang, Haixu
    Shen, Zhongke
    Zhang, Maohua
    Wang, Zhen
    Li, Jiamin
    JOURNAL OF BUILDING ENGINEERING, 2024, 96
  • [5] THERMAL INSULATION OF HIGH-TEMPERATURE REACTORS
    CORNILLE, Y
    BULLETIN DE LA SOCIETE FRANCAISE DE CERAMIQUE, 1976, (110): : 21 - 26
  • [6] The thermal insulation of high-temperature equipment
    Boeck, PA
    TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS, 1915, 53 : 324 - 334
  • [7] EFFECT OF DIFFERENT FIBERS ON THE MECHANICAL-PROPERTIES OF INORGANIC HIGH-TEMPERATURE RESISTANT CEMENT-BASED COATINGS
    CHEN, JL
    ZHANG, L
    FROM MATERIALS SCIENCE TO CONSTRUCTION MATERIALS ENGINEERING, VOLS 1-3: PORE STRUCTURE AND CONSTRUCTION MATERIALS PROPERTIES, COMBINING MATERIALS, DURABILITY OF CONSTRUCTION MATERIALS, 1987, : 437 - 443
  • [8] Evaluation of thermal conductivity of insulation materials at high-temperature for longtime
    Science and Technology on Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China
    不详
    Yang, J. (yjx192003@163.com), 1600, Beijing University of Aeronautics and Astronautics (BUAA) (30):
  • [9] High-temperature thermal insulation performance of light mass composites
    Lin, Xiaoxuan
    Shen, Zhixun
    Wei, Xi
    Zhang, Weigang
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2011, 28 (01): : 8 - 14
  • [10] CERAMIC FIBROUS MATERIALS FOR HIGH-TEMPERATURE INSULATION
    DRESHER, WH
    PIKE, JN
    METALS ENGINEERING QUARTERLY, 1971, 11 (03): : 32 - &