Glucuronolactone Restores the Intestinal Barrier and Redox Balance Partly Through the Nrf2/Akt/FOXO1 Pathway to Alleviate Weaning Stress-Induced Intestinal Dysfunction in Piglets

被引:0
|
作者
Zhang, Beibei [1 ,2 ,3 ,4 ,5 ]
Tian, Min [2 ,3 ,4 ,5 ]
Qiu, Yueqin [2 ,3 ,4 ,5 ]
Wu, Jing [2 ,3 ,4 ,5 ]
Cui, Chenbin [2 ,3 ,4 ,5 ]
Liu, Shilong [1 ,2 ,3 ,4 ,5 ]
Hou, Jing [2 ,3 ,4 ,5 ]
Tian, Chaoyang [2 ,3 ,4 ,5 ]
Wang, Li [2 ,3 ,4 ,5 ]
Gao, Kaiguo [2 ,3 ,4 ,5 ]
Jiang, Zongyong [2 ,3 ,4 ,5 ]
Yang, Xuefen [2 ,3 ,4 ,5 ]
机构
[1] South China Agr Univ, Coll Anim Sci, Guangzhou 510642, Peoples R China
[2] Guangdong Acad Agr Sci, Inst Anim Sci, Guangzhou 510640, Peoples R China
[3] State Key Lab Swine & Poultry Breeding Ind, Guangzhou 510640, Peoples R China
[4] Minist Agr & Rural Affairs, Key Lab Anim Nutr & Feed Sci South China, Guangzhou 510640, Peoples R China
[5] Guangdong Prov Key Lab Anim Breeding & Nutr, Guangzhou 510640, Peoples R China
关键词
weaned piglet; glucuronolactone; oxidative stress; growth performance; intestinal health; GUT MICROBIOTA; OXIDATIVE STRESS; EXPRESSION; METABOLISM; RESPONSES; IMPROVES; HEALTH; GROWTH; CELLS; PIGS;
D O I
10.3390/antiox14030352
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
(1) Background: Glucuronolactone (GLU) is a glucose metabolite with antioxidant activity. At present, the exact role of it in regulating the intestinal health of piglets under weaning stress is not clear. The purpose of this study is to investigate the effects of GLU on the growth performance and intestinal health of piglets under weaning stress and to explore potential mechanisms. (2) Methods: Twenty-four weaned piglets were randomly assigned into two groups, with one group receiving a basal diet and the other group receiving an experimental diet supplemented with 200 mg/kg of GLU. (3) Results: GLU increased the ADG, ADFI, and final body weight of piglets, while reducing the diarrhea rate. Mechanistically, GLU alleviates weaning stress-induced intestinal oxidative stress and inflammatory responses in piglets partly through activating the Nrf2-Akt signaling pathway to suppress the transcriptional activity of FOXO1, while also inhibiting the activation of the TLR4-MAPK signaling pathway to reduce the secretion of pro-inflammatory cytokines. Moreover, GLU increased the relative abundance of Lactobacillus reuteri in the ileum of piglets and improved the composition of the gut microbiota. (4) Conclusions: GLU reduced inflammation and oxidative stress through the Nrf2/Akt/FOXO1 signaling pathway and improved intestinal health, resulting in improved growth performance of the piglets.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Nrf2 Pathway Mediates Resistance to Weaning Stress-Induced Intestinal Injury in Piglets of Different Breeds.
    Qin, Ying-chao
    Zan, Geng-xiu
    Ding, Su-juan
    Gao, Chun-qi
    Yan, Hui-chao
    Kong, Xiang-feng
    Wang, Xiu-qi
    JOURNAL OF ANIMAL SCIENCE, 2022, 100 : 278 - 278
  • [2] Nrf2 Pathway Mediates Resistance to Weaning Stress-Induced Intestinal Injury in Piglets of Different Breeds.
    Qin, Ying-chao
    Zan, Geng-xiu
    Ding, Su-juan
    Gao, Chun-qi
    Yan, Hui-chao
    Kong, Xiang-feng
    Wang, Xiu-qi
    JOURNAL OF ANIMAL SCIENCE, 2022, 100 : 278 - 278
  • [3] Resveratrol Attenuates Oxidative Stress-Induced Intestinal Barrier Injury through PI3K/Akt-Mediated Nrf2 Signaling Pathway
    Zhuang, Yu
    Wu, Huirong
    Wang, Xiangxiang
    He, Jieyu
    He, Shanping
    Yin, Yulong
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2019, 2019
  • [4] Eucommia ulmoides flavonoids alleviate intestinal oxidative stress damage in weaned piglets by regulating the Nrf2/Keap1 signaling pathway
    Li, Rui
    Tan, Bie
    Jiang, Qian
    Chen, Fengming
    Liu, Kai
    Liao, Peng
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2024, 288
  • [5] Biogenic Nanoselenium Particles Effectively Attenuate Oxidative Stress-Induced Intestinal Epithelial Barrier Injury by Activating the Nrf2 Antioxidant Pathway
    Song, Deguang
    Cheng, Yuanzhi
    Li, Xiaoxiao
    Wang, Fengqin
    Lu, Zeqing
    Xiao, Xiao
    Wang, Yizhen
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (17) : 14724 - 14740
  • [6] Quercetin attenuates deoxynivalenol-induced intestinal barrier dysfunction by activation of Nrf2 signaling pathway in IPEC-J2 cells and weaned piglets
    Li, Enkai
    Li, Chuang
    Horn, Nathan
    Ajuwon, Kolapo M.
    CURRENT RESEARCH IN TOXICOLOGY, 2023, 5
  • [7] Baizhu shaoyao decoction restores the intestinal barrier and brain-gut axis balance to alleviate diarrhea-predominant irritable bowel syndrome via FoxO1/FoxO3a
    Wei, Yuanyuan
    Fan, Yimeng
    Huang, Sijuan
    Lv, Jianyu
    Zhang, Yannan
    Hao, Zhihui
    PHYTOMEDICINE, 2024, 122
  • [8] Isinglass Polysaccharides Regulate Intestinal-Barrier Function and Alleviate Obesity in High-Fat Diet Mice through the HO-1/Nrf2 Pathway and Intestinal Microbiome Environment
    Li, Guopeng
    Li, Shugang
    Liu, Huanhuan
    Zhang, Lihua
    Gao, Jingzhu
    Zhang, Siteng
    Zou, Yue
    Xia, Xiaodong
    Ren, Xiaomeng
    NUTRIENTS, 2022, 14 (19)
  • [9] Bryostatin-1 attenuates intestinal ischemia/reperfusion-induced intestinal barrier dysfunction, inflammation, and oxidative stress via activation of Nrf2/HO-1 signaling
    Liu, Mulin
    Wen, Hexin
    Zuo, Lugen
    Song, Xue
    Geng, Zhijun
    Ge, Sitang
    Ge, Yuanyuan
    Wu, Rong
    Chen, Shiyuan
    Yu, Chaowen
    Gao, Yong
    FASEB JOURNAL, 2023, 37 (06):
  • [10] Ferulic acid protects against heat stress-induced intestinal epithelial barrier dysfunction in IEC-6 cells via the PI3K/Akt-mediated Nrf2/HO-1 signaling pathway
    He, Shasha
    Guo, Yuhong
    Zhao, Jingxia
    Xu, Xiaolong
    Song, Jin
    Wang, Ning
    Liu, Qingquan
    INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2019, 35 (01) : 112 - 121