Explicit non-Gorenstein R = T via rank bounds I:deformation theory

被引:0
|
作者
Hsu, Catherine [1 ]
Wake, Preston [2 ]
Wang-Erickson, Carl [3 ]
机构
[1] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2025年 / 31卷 / 01期
关键词
Galois representations; Modular forms; Non-optimal level; R = T theorem; MODULAR-REPRESENTATIONS;
D O I
10.1007/s00029-024-01000-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ribet has proven remarkable results about non-optimal levels of residually reducibleGalois representations. We focus on a non-optimal levelNthat is the product oftwo distinct primes and where the Galois deformation ring is not expected to beGorenstein. We prove a Galois-theoretic criterion for the deformation ring to be assmall as possible-that is, for there to be auniquenewform of level N with reducible residual representation. When this criterion is satisfied, we deduce an R = T theorem.
引用
收藏
页数:71
相关论文
共 50 条
  • [1] Explicit non-Gorenstein R = (SIC) via rank bounds II: Computational aspects
    Hsu, Catherine
    Wake, Preston
    Wang-Erickson, Carl
    RESEARCH IN NUMBER THEORY, 2023, 9 (01)
  • [2] Explicit non-Gorenstein R=T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R={\mathbb {T}}$$\end{document} via rank bounds I: deformation theory
    Catherine Hsu
    Preston Wake
    Carl Wang-Erickson
    Selecta Mathematica, 2025, 31 (1)
  • [3] Explicit non-Gorenstein R=T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R={\mathbb {T}}$$\end{document} via rank bounds II: Computational aspects
    Catherine Hsu
    Preston Wake
    Carl Wang-Erickson
    Research in Number Theory, 2023, 9 (1)
  • [4] Explicit Lower Bounds via Geometric Complexity Theory
    Buergisser, Peter
    Ikenmeyer, Christian
    STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 141 - 150
  • [5] A Transition Model in f(R,T) Theory via Observational Constraints
    Tiwari, Rishi Kumar
    Shukla, Bhupendra Kumar
    Sofuoglu, Deger
    Kosem, Dilay
    SYMMETRY-BASEL, 2023, 15 (04):
  • [6] Anisotropic ultracompact star via complete geometric deformation in f(R, T) gravity
    Sadiq, Sobia
    Shafiq, Anam
    Ikram, Ayesha
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (02):
  • [7] Anisotropic ultracompact star via complete geometric deformation in f(R, T) gravity
    Sobia Sadiq
    Anam Shafiq
    Ayesha Ikram
    The European Physical Journal Plus, 139
  • [8] Non-singular anisotropic solutions for strange star model in f(R,T,RζγTζγ) gravity theory
    Feng, Yihu
    Naseer, Tayyab
    Mustafa, G.
    Maurya, S. K.
    EUROPEAN PHYSICAL JOURNAL C, 2025, 85 (01):
  • [9] Gravitational decoupling minimal geometric deformation model in modified f (R, T) gravity theory
    Maurya, S. K.
    Errehymy, Abdelghani
    Singh, Ksh. Newton
    Tello-Ortiz, Francisco
    Daoud, Mohammed
    PHYSICS OF THE DARK UNIVERSE, 2020, 30
  • [10] γγ→t(c)over-bar+c(t)over-bar in a supersymmetric theory with explicit R-parity violation
    Yu, ZH
    Pietschmann, H
    Ma, WG
    Han, L
    Jiang, Y
    EUROPEAN PHYSICAL JOURNAL C, 2000, 16 (03): : 541 - 546