Indentation elastic work recovery: A mechanical index of solid electrolyte interphase for effectively assessing electrochemical properties of lithium metal anode

被引:0
|
作者
Mao, Xinyu [1 ]
Wang, Kehua [1 ]
Zhang, Xiyu [1 ]
Tian, Wubian [1 ]
Tao, Xiao [1 ]
Chen, Jian [1 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Met Mat, Nanjing 211189, Peoples R China
关键词
Lithium metal anode; Solid electrolyte interphase; Nanoindentation; Elastic work recovery; Electrochemical properties; NANOINDENTATION; DEFORMATION; CHALLENGES; BATTERIES; HARDNESS; MODULUS; FAILURE; GROWTH; ORIGIN; LAYER;
D O I
10.1016/j.jpowsour.2025.236346
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal anode has attracted wide attention due to its high theoretical specific capacity (3860 mAh g-1) and other advantages. The main bottleneck of lithium metal anode stems from the deterioration and failure of solid electrolyte interphase (SEI). The mechanical properties of SEI have been widely acknowledged as an important factor in evaluating the cycling stability. However, there is a scarcity of studies on the relationship between the mechanical properties of SEI and electrochemical properties, as well as a lack of an appropriate mechanical index for roundly evaluating the ability of SEI to resist deformation and fracture. In this study, the mechanical properties of the SEI are measured by nanoindentation and an index of "elastic work recovery (We/ Wt)" is constructed to evaluate. Based on this method, we investigate the SEIs prefabricated under two electrolytes, five current densities and five capacity densities, which demonstrates a consistent correlation between elastic work recovery of the SEIs and the electrochemical properties. Moreover, the easily obtained elastic work recovery index is higher sensitive compared to the conventionally used modulus index. This study will not only enhance the understanding in the mechanical role of SEI films but also provide an effective means for evaluation.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Elastic Polymer Solid Electrolyte Interphase Protects Lithium Metal Anode
    Lu, Wei
    Wang, Zihao
    Zhao, Anshun
    Yu, Mingxi
    Du, Mi
    Zhao, Xue
    Zhang, Wenjing
    Liu, Mei
    Feng, Ming
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2024, 52 (07): : 2187 - 2196
  • [2] Ionic conductivity and mechanical properties of the solid electrolyte interphase in lithium metal batteries
    Park, Seongsoo
    Chaudhary, Rashma
    Han, Sang A.
    Qutaish, Hamzeh
    Moon, Janghyuk
    Park, Min-Sik
    Kim, Jung Ho
    ENERGY MATERIALS, 2023, 3 (01):
  • [3] Structural Properties of Solid Electrolyte Interphase on Lithium Metal
    Jeong, Soon-Ki
    Choi, Hye-Kang
    Kim, Yang Soo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (11) : 8803 - 8807
  • [4] Solid Electrolyte Interphase Formation on Lithium Metal Anode in Polymer Electrolytes
    Ushakova, Elena
    Itkis, Daniil
    Sergeev, Vladimir
    Karpushkin, Evgenij
    Jashina, Lada
    PROCEEDINGS OF INTERNATIONAL CONFERENCE MODERN ELECTROCHEMICAL METHODS XXXIX, 2019, : 223 - 226
  • [5] Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode
    Lang, Shuang-Yan
    Shen, Zhen-Zhen
    Hu, Xin-Cheng
    Shi, Yang
    Guo, Yu-Guo
    Jia, Fei-Fei
    Wang, Fu-Yi
    Wen, Rui
    Wan, Li-Jun
    NANO ENERGY, 2020, 75 (75)
  • [6] Understanding and modifying strategies for lithium metal anode solid electrolyte interphase
    Li, Wanxia
    Li, Xinpeng
    Chen, Yawei
    Jie, Yulin
    Cao, Ruiguo
    Jiao, Shuhong
    CHINESE SCIENCE BULLETIN-CHINESE, 2024, 69 (10): : 1298 - 1314
  • [7] Multifunctional artificial solid electrolyte interphase layer for lithium metal anode in carbonate electrolyte
    Ran, Qin
    Han, Chongyu
    Tang, Anping
    Chen, Hezhang
    Tang, Zilong
    Jiang, Kecheng
    Mai, Yongjin
    Wang, Jinglun
    SOLID STATE IONICS, 2020, 344
  • [8] Progress and Perspective of Constructing Solid Electrolyte Interphase on Stable Lithium Metal Anode
    Yu, Jing
    Zhao, Liang
    Huang, Yanfei
    Hu, Yi
    Chen, Likun
    He, Yan-Bing
    FRONTIERS IN MATERIALS, 2020, 7 (07):
  • [9] Measurement of mechanical and fracture properties of solid electrolyte interphase on lithium metal anodes in lithium ion batteries
    Yoon, Insun
    Jurng, Sunhyung
    Abraham, Daniel P.
    Lucht, Brett L.
    Guduru, Pradeep R.
    ENERGY STORAGE MATERIALS, 2020, 25 : 296 - 304
  • [10] Dissolution of the Solid Electrolyte Interphase and Its Effects on Lithium Metal Anode Cyclability
    Sayavong, Philaphon
    Zhang, Wenbo
    Oyakhire, Solomon T.
    Boyle, David T.
    Chen, Yuelang
    Kim, Sang Cheol
    Vila, Rafael A.
    Holmes, Sarah E.
    Kim, Mun Sek
    Bent, Stacey F.
    Bao, Zhenan
    Cui, Yi
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (22) : 12342 - 12350