Data-Driven Modeling of Nonlinear Delay Differential Equations with Gap Effects using SINDy

被引:1
|
作者
Xu, Jiamin [1 ]
Demirer, Nazli [2 ]
Pho, Vy [2 ]
Tian, Kaixiao [3 ]
Zhang, He [3 ]
Bhaidasna, Ketan [2 ]
Darbe, Robert [2 ]
Chen, Dongmei [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78721 USA
[2] Halliburton, Houston, TX 77032 USA
[3] Halliburton, SG-639940 Singapore, Singapore
关键词
D O I
10.1109/AIM55361.2024.10637184
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An accurate modeling approach to predict the trajectory of a drillstring plays a critical role in drilling operation. Nonlinear Delay Differential Equations (DDEs) have been considered as an effective tool to serve the purpose. This paper introduces a novel data-driven approach to model the borehole propagation dynamics by incorporating nonlinear DDEs with Linear Complementarity Problem (LCP) using the Sparse Identification of Nonlinear Dynamics (SINDy) method. The developed model can predict borehole propagation without relying on physics-based information while retaining the same dynamics as those predicted by physics-based nonlinear DDEs. To assess the resilience of the proposed approach, we introduce noise into the dataset, demonstrating the robustness of the SINDy method. Additionally, a stability analysis of the data-driven DDEs offering insights into its reliability and potential applications.
引用
收藏
页码:198 / 203
页数:6
相关论文
共 50 条
  • [1] Uncovering Dynamical Equations of Stochastic Decision Models Using Data-Driven SINDy Algorithm
    Lenfesty, Brendan
    Bhattacharyya, Saugat
    Wong-Lin, Kongfatt
    NEURAL COMPUTATION, 2025, 37 (03) : 569 - 587
  • [2] Data-driven discovery of delay differential equations with discrete delays
    Pecile, Alessandro
    Demo, Nicola
    Tezzele, Marco
    Rozza, Gianluigi
    Breda, Dimitri
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 461
  • [3] A Data-Driven Approach to Modeling Sea Clutter Stochastic Differential Equations
    Pici, Caden J.
    Ray, Asok
    Kompella, Sastry
    Narayanan, Ram M.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (04) : 5312 - 5321
  • [4] An Online Data-Driven Method for Accurate Detection of Thermal Updrafts Using SINDy
    Lu, Yufeng
    Liu, Chenglou
    Hong, Haichao
    Huang, Yunwei
    Ji, Tingwei
    Xie, Fangfang
    AEROSPACE, 2024, 11 (10)
  • [5] Data-Driven Discovery of Stochastic Differential Equations
    Yasen Wang
    Huazhen Fang
    Junyang Jin
    Guijun Ma
    Xin He
    Xing Dai
    Zuogong Yue
    Cheng Cheng
    Hai-Tao Zhang
    Donglin Pu
    Dongrui Wu
    Ye Yuan
    Jorge Gon?alves
    Jürgen Kurths
    Han Ding
    Engineering, 2022, 17 (10) : 244 - 252
  • [6] Data-Driven Discovery of Stochastic Differential Equations
    Wang, Yasen
    Fang, Huazhen
    Jin, Junyang
    Ma, Guijun
    He, Xin
    Dai, Xing
    Yue, Zuogong
    Cheng, Cheng
    Zhang, Hai-Tao
    Pu, Donglin
    Wu, Dongrui
    Yuan, Ye
    Goncalves, Jorge
    Kurths, Juergen
    Ding, Han
    ENGINEERING, 2022, 17 : 244 - 252
  • [7] Data-driven discovery of partial differential equations
    Rudy, Samuel H.
    Brunton, Steven L.
    Proctor, Joshua L.
    Kutz, J. Nathan
    SCIENCE ADVANCES, 2017, 3 (04):
  • [8] A data-driven Koopman model predictive control framework for nonlinear partial differential equations
    Arbabi, Hassan
    Korda, Milan
    Mezic, Igor
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 6409 - 6414
  • [9] Data-driven modeling of nonlinear traveling waves
    Koch, J.
    CHAOS, 2021, 31 (04)
  • [10] Data-Driven Identification of Parametric Partial Differential Equations
    Rudy, Samuel
    Alla, Alessandro
    Brunton, Steven L.
    Kutz, J. Nathan
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (02): : 643 - 660