Development of Fe-reinforced PLA-based composite filament for 3D printing: Process parameters, mechanical and microstructural characterization

被引:0
|
作者
Memis, Melisa [1 ]
Gok, Dilsad Akgumus [1 ]
机构
[1] Istanbul Aydin Univ, Fac Engn, Dept Mech Engn, TR-34295 Istanbul, Turkiye
关键词
3D printer; Filament extruder machine; Composite filament; Additive manufacturing; Process parameters; Mechanical properties; Microstructure characterization;
D O I
10.1016/j.asej.2025.103279
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The most used raw materials in 3D printers, commonly known as Fused Deposition Modeling (FDM), are filaments. These filaments are obtained by going through heating, injection, cooling, winding and coiling stages in the filament extruder machine. FDM technology, which is used especially for prototype production purposes, is expected to be used more widely due to its increased mass production capacity, recyclability, environmental friendliness and waste reduction. In this study, before the production of composite filament, preliminary tests were carried out with polylactic acid (PLA), acrylonitrile butadiene styrene (ABS) and polyethylene terephthalate glycol (PET-G) polymer granules in a laboratory type filament extruder machine, and the process parameters were determined for each polymer filament. Since the optimum process parameters (temperature, injection rate, extrusion rate, and winding rate) were obtained in PLA, composite filament was produced by reinforcing 5% iron (Fe) powder into the PLA matrix in the same extruder machine. The produced filaments were subjected to tensile, hardness, FTIR, surface roughness and SEM-EDS analyses. Analysis has shown that Fe-reinforced PLA-based composite filament increases the hardness of pure PLA filament by 21.15%, tensile strength by 49.60% and increases the surface roughness by 4 times. As a result, it was determined that 5%Fe powder added to PLA improved the mechanical properties but negatively affected the surface roughness.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Enhancing mechanical properties of PLA-based bio composite filament reinforced with horse gram filler for 3D printing applications
    Nataraj, Ganesh
    Babu, S. Ramesh
    JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, 2025, 31 (02): : 453 - 468
  • [2] Influence of 3D printing process parameters on mechanical properties of PLA based ceramic composite parts
    Mishra, Dipesh Kumar
    Giri, Jayant
    Sathish, T.
    Kanan, Mohammad
    Prajapati, Devendra
    RESULTS IN ENGINEERING, 2025, 25
  • [3] 3D printing of a continuous fiber-reinforced composite based on a coaxial Kevlar/PLA filament
    Cersoli, Trenton
    Yelamanchi, Bharat
    MacDonald, Eric
    Carrillo, Jose Gonzalo
    Cortes, Pedro
    COMPOSITES AND ADVANCED MATERIALS, 2021, 30
  • [4] Optimization of 3D Printing Process Parameters of Polylactic Acid Filament Based on the Mechanical Test
    Raja, S.
    Agrawal, Anant Prakash
    Patil, Pravin
    Thimothy, P.
    Capangpangan, Rey Y.
    Singhal, Piyush
    Wotango, Mulugeta Tadesse
    INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING, 2022, 2022
  • [5] PLA-based ceramic composites for 3D printing of anthropomorphic simulators
    Eduardo Thomazi
    Celso Roman
    Thiago Oliveira Gamba
    Cláudio Antônio Perottoni
    Janete Eunice Zorzi
    The International Journal of Advanced Manufacturing Technology, 2023, 128 : 5289 - 5300
  • [6] A short banana fiber-PLA filament for 3D printing: Development and characterization
    Shafeer, P. P. Mohamed
    Pitchaimani, Jeyaraj
    Doddamani, Mrityunjay
    POLYMER COMPOSITES, 2024,
  • [7] PLA-based ceramic composites for 3D printing of anthropomorphic simulators
    Thomazi, Eduardo
    Roman, Celso
    Gamba, Thiago Oliveira
    Perottoni, Claudio Antonio
    Zorzi, Janete Eunice
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 128 (11-12): : 5289 - 5300
  • [8] Characteristics of 3D Printable Bronze PLA-Based Filament Composites for Gaskets
    Sava, Marcela
    Nagy, Ramona
    Menyhardt, Karoly
    MATERIALS, 2021, 14 (16)
  • [9] The Influence of 3D Printing Parameters on the Mechanical Behavior of PLA
    Enache, Ioana-Catalina
    Cristina, Ioana-Madalina
    Chivu, Oana-Roxana
    Mates, Ileana
    Ionita, Elena
    Geambasu, Gabriel
    MATERIALE PLASTICE, 2024, 61 (01) : 82 - 92
  • [10] Toughness Enhancement of PLA-Based Filaments for Material Extrusion 3D Printing
    Pongsathit S.
    Kamaisoom J.
    Rungteerabandit A.
    Opaprakasit P.
    Jiamjiroch K.
    Pattamaprom C.
    Material Design and Processing Communications, 2023, 2023