Revisiting dynamical orbits in the planar anisotropic Kepler problem

被引:0
|
作者
Ershkov, Sergey [1 ,2 ,3 ]
机构
[1] Plekhanov Russian Univ Econ, Scopus number 60030998, Moscow, Russia
[2] MV Lomonosovs Moscow State Univ, Sternberg Astron Inst, 13 Univ Prospect, Moscow 119992, Russia
[3] Russian Technol Univ, MIREA, 78 Vernadsky Ave, Moscow 119454, Russia
关键词
Dynamics of a mass point; Restricted two-body problem (R2BP); Kepler's formulation of R2BP; Anisotropic Kepler problem; 2-BODY PROBLEM; ANALYTIC SOLUTION; DRAG;
D O I
10.1016/j.ijnonlinmec.2025.105029
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this investigation, a novel solving method has been introduced for determining the coordinates of a mass point m2 in orbit around a more massive primary m1 (within the framework of modified version of the restricted two- body problem, R2BP). Such analytical approach describes periodic orbits for the planar anisotropic Kepler problem instead of the classical Kepler's formulation of the R2BP. Simultaneously, a system of equations of motion in polar coordinates has been derived and then successfully explored to identify the quasi-periodic orbits for the planar anisotropic Kepler problem which are proved to be slightly quasi-oscillating along the elliptic classical orbit according to Kepler's law for R2BP. An analytical expression has been obtained for the function of polar radius via elegant procedure of integration (a successful repetitive cascade of changes of appropriate variables). So, solution can be presented via quasi-periodic cycles of oscillations of trajectory of mass point m2 moving around a massive primary m1. MSC classes: 70F15, 70F07.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Periodic Orbits of the Planar Anisotropic Kepler Problem
    Abouelmagd, Elbaz I.
    Llibre, Jaume
    Garcia Guirao, Juan Luis
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (03):
  • [2] Periodic orbits of the planar anisotropic generalized Kepler problem
    Llibre, Jaume
    Valls, Claudia
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (04)
  • [3] COLLISION ORBITS IN ANISOTROPIC KEPLER PROBLEM
    DEVANEY, RL
    INVENTIONES MATHEMATICAE, 1978, 45 (03) : 221 - 251
  • [4] Periodic orbits for anisotropic perturbations of the Kepler problem
    Escalona-Buendia, A. H.
    Perez-Chavela, E.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (03) : 591 - 601
  • [5] PERIODIC ORBITS OF THE SPATIAL ANISOTROPIC KEPLER PROBLEM WITH ANISOTROPIC PERTURBATIONS
    Li, Mengyuan
    Liu, Qihuai
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [6] Periodic Orbits of the Anisotropic Kepler Problem with Quasihomogeneous Potentials
    Lopez, Miguel A.
    Martinez, Raquel
    Vera, Juan A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (14):
  • [7] Variational proof of the existence of periodic orbits in the anisotropic Kepler problem
    Shota Iguchi
    Mitsuru Shibayama
    Celestial Mechanics and Dynamical Astronomy, 2023, 135
  • [8] Variational proof of the existence of periodic orbits in the anisotropic Kepler problem
    Iguchi, Shota
    Shibayama, Mitsuru
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2023, 135 (03):
  • [9] Entire Minimal Parabolic Trajectories: The Planar Anisotropic Kepler Problem
    Barutello, Vivina
    Terracini, Susanna
    Verzini, Gianmaria
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 207 (02) : 583 - 609
  • [10] Entire Minimal Parabolic Trajectories: The Planar Anisotropic Kepler Problem
    Vivina Barutello
    Susanna Terracini
    Gianmaria Verzini
    Archive for Rational Mechanics and Analysis, 2013, 207 : 583 - 609