Belyi Maps from Zeroes of Hypergeometric Polynomials

被引:0
|
作者
Vidunas, Raimundas [1 ]
机构
[1] Vilnius Univ, Inst Appl Math, LT-03225 Vilnius, Lithuania
关键词
Gauss hypergeometric function; Belyi map (of genus 0); elliptic surfaces; KRAWTCHOUK POLYNOMIALS; INTEGRAL ZEROS;
D O I
10.3390/math13010156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The evaluation of low-degree hypergeometric polynomials to zero defines algebraic hypersurfaces in the affine space of the free parameters and the argument of the hypergeometric function. This article investigates the algebraic surfaces defined by the hypergeometric equation F12(-N,b;c;z)=0 with N=3 or N=4. As a captivating application, these surfaces parametrize certain families of genus 0 Belyi maps. Thereby, this article contributes to the systematic enumeration of Belyi maps.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Betti maps, Pell equations in polynomials and almost-Belyi maps
    Barroero, Fabrizio
    Capuano, Laura
    Zannier, Umberto
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [2] Separated Belyi maps
    Scherr, Zachary
    Zieve, Michael E.
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (06) : 1389 - 1406
  • [3] ON ZEROES OF ORTHOGONAL POLYNOMIALS
    VIDENSKII, VS
    DOKLADY AKADEMII NAUK SSSR, 1963, 152 (05): : 1038 - &
  • [4] Zeroes of polynomials on l∞
    Fernandez-Unzueta, Maite
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) : 1115 - 1124
  • [5] Bounding the degree of Belyi polynomials
    Rodriguez, Jose
    JOURNAL OF NUMBER THEORY, 2013, 133 (09) : 2892 - 2900
  • [6] ON THE ZEROES OF GOSS POLYNOMIALS
    Gekeler, Ernst-Ulrich
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (03) : 1669 - 1685
  • [7] Computing Euclidean Belyi maps
    Radosevich, Matthew
    Voight, John
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (02): : 543 - 565
  • [8] SZEGO POLYNOMIALS FROM HYPERGEOMETRIC FUNCTIONS
    Ranga, A. Sri
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (12) : 4259 - 4270
  • [9] On the zeroes of hypergraph independence polynomials
    Galvin, David
    Mckinley, Gwen
    Perkins, Will
    Sarantis, Michail
    Tetali, Prasad
    COMBINATORICS PROBABILITY AND COMPUTING, 2024, 33 (01) : 65 - 84
  • [10] Orthogonal polynomials—centroid of their zeroes
    André Ronveaux
    Numerical Algorithms, 2008, 49 : 373 - 385