Optimization of soil hydraulic parameters within a constrained sampling space

被引:0
|
作者
Li, Meijun [1 ]
Shao, Wei [1 ,2 ]
Yu, Wenjun [1 ]
Su, Ye [3 ,4 ,5 ]
Song, Qinghai [6 ]
Zhang, Yiping [6 ]
Gao, Hongkai [7 ]
Zhang, Yonggen [8 ]
Dong, Jianzhi [8 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Hydrol & Water Resources, Key Lab Hydrometeorol Disaster Mech & Warning, Minist Water Resources, Nanjing 210044, Peoples R China
[2] Qinghai Prov Meteorol Disaster Prevent & Def Techn, Sining 810001, Qinghai, Peoples R China
[3] Charles Univ Prague, Fac Sci, Dept Phys Geog & Geoecol, Albertov 6, Prague 2, Czech Republic
[4] Stockholm Univ, Dept Phys Geog, SE-10691 Stockholm, Sweden
[5] Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden
[6] Chinese Acad Sci, Key Lab Trop Forest Ecol, Xishuangbanna Trop Bot Garden, Mengla 666303, Yunnan, Peoples R China
[7] East China Normal Univ, Sch Geog Sci, Shanghai, Peoples R China
[8] Tianjin Univ, Inst Surface Earth Syst Sci, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Soil hydraulic parameters; Particle Swarm Optimization (PSO); Markov Chain Monte Carlo (MCMC); Sequential Monte Carlo (SMC); Rosetta 3 pedotransfer function; GENETIC ALGORITHM; MODEL; DISTRIBUTIONS; EVAPORATION; UNCERTAINTY; EVOLUTION;
D O I
10.1016/j.geoderma.2025.117210
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The direct optimization of soil hydraulic parameters (SHP) in unconstrained parameter space introduces significant uncertainties in ecohydrological modeling, particularly when addressing the complex model structure of Richards' equation combined with Penman-Monteith equation. Pedotransfer functions (e.g., the latest version of Rosetta 3), which have been extensively trained using abundant soil hydraulic data, could potentially provide a physical constraint for sampling SHP. This study integrates optimization algorithms (Particle Swarm Optimization, PSO; Markov Chain Monte Carlo, MCMC; Sequential Monte Carlo, SMC; Generalized Likelihood Uncertainty Estimation, GLUE) with two sampling strategies- direct optimization of SHP and indirect optimization of SHP derived from soil particle composition (SPC) using Rosetta 3- to evaluate their performance in ecohydrological modeling under predefined soil conditions. The results demonstrated that indirect optimization of SHP significantly enhances the accuracy in recovering predefined true parameters and states, and reduces the uncertainty of ecohydrological modeling compared to direct optimization of SHP. Specifically, the mean quartile deviation of biases in soil water content and evaporation were reduced from 0.0347 m3/m3 and 0.0027 m/h to 0.0061 m3/m3 and 0.0010 m/h, respectively. Furthermore, integration of the Rosetta 3 diminished the dimensionality of inverse modeling, thereby significantly enhancing algorithm convergence speed and precision. It is recommended to integrate Rosetta 3 with various optimization algorithms to enhance the accuracy of ecohydrological modeling.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] SOIL PARAMETERS AND SAMPLING SCHEME FOR CHARACTERIZING SOIL HYDRAULIC PROPERTIES OF A WATERSHED.
    Bresler, Eshel
    Green, Richard E.
    Technical Report - University of Hawaii, Water Resources Research Center, 1982, (148):
  • [2] Estimating unsaturated soil hydraulic parameters using ant colony optimization
    Abbaspour, KC
    Schulin, R
    van Genuchten, MT
    ADVANCES IN WATER RESOURCES, 2001, 24 (08) : 827 - 841
  • [3] Constrained Optimization of a Hydraulic Actuation System
    Fox, Michael T.
    Chong, Edwin K. P.
    ENERGIES, 2022, 15 (15)
  • [4] Hydraulic device for transect sampling soil
    Department of Agronomy, Kansas State Univ., Manhattan, KS 66506-5501, United States
    Soil Sci. Soc. Am. J., 2 (480-486):
  • [5] Hydraulic device for transect sampling soil
    Janssen, KA
    Havlin, JL
    Horstick, EH
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1998, 62 (02) : 480 - 486
  • [6] Dataset of soil hydraulic parameters in the Yellow River Basin based on in situ deep sampling
    Tong, Yongping
    Wang, Yunqiang
    Zhou, Jingxiong
    Guo, Xiangyu
    Wang, Ting
    Xu, Yuting
    Sun, Hui
    Zhang, Pingping
    Li, Zimin
    Lauerwald, Ronny
    SCIENTIFIC DATA, 2024, 11 (01)
  • [7] Reduce uncertainty in soil hydrological modeling: A comparison of soil hydraulic parameters generated by random sampling and pedotransfer function
    Shao, Wei
    Chen, Sijie
    Su, Ye
    Dong, Jianzhi
    Ni, Junjun
    Yang, Zongji
    Zhang, Yonggen
    JOURNAL OF HYDROLOGY, 2023, 623
  • [8] Multistep optimization of HyPix model for flexible vertical scaling of soil hydraulic parameters
    Pollacco, J. A. P.
    Fernandez-Galvez, J.
    Rajanayaka, C.
    Zammit, S. C.
    Ackerer, P.
    Belfort, B.
    Lassabatere, L.
    Angulo-Jaramillo, R.
    Lilburne, L.
    Carrick, S.
    Peltzer, D. A.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2022, 156
  • [9] CONSTRAINED OPTIMIZATION WITH FUZZY PARAMETERS
    RAMIK, J
    RIMANEK, J
    EKONOMICKO-MATEMATICKY OBZOR, 1985, 21 (01): : 58 - 65
  • [10] Generic optimization approach of soil hydraulic parameters for site-specific model applications
    Trenz, Jonas
    Memic, Emir
    Batchelor, William D.
    Graeff-Hoenninger, Simone
    PRECISION AGRICULTURE, 2024, 25 (02) : 654 - 680