Multi-perspective SAR to 3D Translation using Generative AI

被引:0
|
作者
Newey, Michael [1 ]
Kuczynski, James [1 ]
Laher, Rebecca [1 ]
Chan, Michael [1 ]
Vasile, Alexandru [1 ]
机构
[1] MIT, Lincoln Lab, Lexington, MA 02421 USA
关键词
Synthetic Aperture Radar; Artificial Neural Networks; LiDAR;
D O I
10.1109/RADARCONF2458775.2024.10549436
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This work explores the use of generative adversarial networks (GAN) for multi-look SAR to 3D conversion. We extend 2D-to-2D image translation techniques such as CycleGAN to convert SAR imagery to 3D, taking advantage of existing LiDAR data to provide the 3D information for model training. We use collected X-band radar data from the MITLL ARTB sensor, LiDAR from the MITLL AOSTB sensor and USGS public data in our experiments. We evaluate GAN-based translation performance on large sub-urban scenes as well as on small chips centered on ground vehicles. We evaluate the performance of the algorithms with different number and extents of synthetic aperture radar look angles. Finally, for the case of under- or non-represented cases in training data, we introduce a novel inverted simulation augmentation training-and-test procedure for target classification.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Multi-perspective 3D panoramas
    Pasewaldt, Sebastian
    Semmo, Amir
    Trapp, Matthias
    Doellner, Juergen
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2014, 28 (10) : 2030 - 2051
  • [2] PANORAMIC 3D RECONSTRUCTION USING STEREO MULTI-PERSPECTIVE PANORAMA
    Jiang, Wei
    Sugimoto, Shigeki
    Okutomi, Masatoshi
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2010, 24 (06) : 867 - 896
  • [3] 3D Multi-perspective Depth Detection Using Point Clouds and Machine Learning
    Esteves, Andrew
    Bickford, Harry
    Yang, Jaesung
    Shen, Xin
    Sohn, Kiwon
    THREE-DIMENSIONAL IMAGING, VISUALIZATION, AND DISPLAY 2024, 2024, 13041
  • [4] 3D reconstruction of typical entities based on multi-perspective images
    Liang, Haiyun
    Liu, Ming
    Hui, Mei
    Zhao, Yuejin
    Dong, Liquan
    Kong, Lingqin
    OPTICAL METROLOGY AND INSPECTION FOR INDUSTRIAL APPLICATIONS IX, 2022, 12319
  • [5] 3D Measurement of Yarn Hairiness via Multi-perspective Images
    Wang, Lei
    Xu, Bugao
    Gao, Weidong
    OPTICS, PHOTONICS, AND DIGITAL TECHNOLOGIES FOR IMAGING APPLICATIONS V, 2018, 10679
  • [6] Interactive Multi-Perspective Views of Virtual 3D Landscape and City Models
    Lorenz, Haik
    Trapp, Matthias
    Doellner, Juergen
    Jobst, Markus
    EUROPEAN INFORMATION SOCIETY: TAKING GEOINFORMATION SCIENCE ONE STEP FURTHER, 2009, : 301 - +
  • [7] A Multi-Perspective 3D Reconstruction Method with Single Perspective Instantaneous Target Attitude Estimation
    Xu, Dan
    Xing, Mengdao
    Xia, Xiang-Gen
    Sun, Guang-Cai
    Fu, Jixiang
    Su, Tao
    REMOTE SENSING, 2019, 11 (11)
  • [8] Omnidirectional 3-d reconstruction using stereo multi-perspective panoramas
    Jiang, W
    Sugimoto, S
    Okutomi, M
    SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, 2004, : 1128 - 1133
  • [9] Omnidirectional 3-D reconstruction using stereo multi-perspective panoramas
    Jiang, W. (jiang@ok.ctrl.titech.ac.jp), Society of Instrument and Control Engineers, (SICE); IEEE Industrial Electronics Society; IEEE Robotics and Automation Society; IEEE Control Systems Society; IEEE Systems, Man and Cybernetics Society (Society of Instrument and Control Engineers (SICE)):
  • [10] Multiscale, multi-perspective imaging assisted robotic microinjection of 3D biological structures
    Joshi, Amey S.
    Alegria, Andrew D.
    Auch, Benjamin
    Khosla, Kanav
    Mendana, Jorge Blanco
    Liu, Kunpeng
    Bischof, John
    Gohl, Daryl M.
    Kodandaramaiah, Suhasa B.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 4844 - 4850